K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2022

\(sin^2A+sin^2B+sin^2C=2\)

\(\Leftrightarrow sin^2A+\dfrac{1-cos2B}{2}+\dfrac{1-cos2C}{2}=2\)

\(\Leftrightarrow sin^2A-\dfrac{1}{2}\left(cos2B+cos2C\right)=1\)

\(\Leftrightarrow1-cos^2A-cos\left(B+C\right)cos\left(B-C\right)=1\)

\(\Leftrightarrow cos^2A+cos\left(B+C\right)cos\left(B-C\right)=0\)

\(\Leftrightarrow cos^2A-cosA.cos\left(B-C\right)=0\)

\(\Leftrightarrow cosA\left[cosA-cos\left(B-C\right)\right]=0\)

\(\Leftrightarrow cosA.sin\left(\dfrac{A+B-C}{2}\right)sin\left(\dfrac{A+C-B}{2}\right)=0\)

\(\Leftrightarrow cosA.sin\left(90^0-C\right)sin\left(90^0-B\right)=0\)

\(\Leftrightarrow cosA.cosB.cosC=0\)

\(\Leftrightarrow\left[{}\begin{matrix}A=90^0\\B=90^0\\C=90^0\end{matrix}\right.\) hay tam giác ABC vuông

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:

Không mất tổng quát giả sử $C$ là góc nhọn.

\(\sin ^2A+\sin ^2B+\sin ^2C=\frac{1-\cos 2A}{2}+\frac{1-\cos 2B}{2}+\sin ^2C\)

\(=1+\sin ^2C-\frac{1}{2}(\cos 2A+\cos 2B)=1+\sin ^2C-\cos (A+B)\cos (A-B)\)

\(=1+\sin ^2C-\cos (180^0-C)\cos (A-B)\)

\(=1+\sin ^2C+\cos C\cos (A-B)=2-\cos ^2C+\cos C\cos (A-B)\)

\(\leq 2-\cos ^2C+\cos C\)  với mọi $C$ nhọn

\(=\frac{9}{4}-(\cos C-\frac{1}{2})^2\leq \frac{9}{4}\)

Do đó mệnh đề đã cho đúng.

 

 

15 tháng 10 2019

Ta có:

Vì:

Suy ra, tam giác ABC vuông tại A

a: giả sử cot A+cot(B+C)=0

=>cot A=cot(-B-C)

=>A=-B-C+180 độ

=>góc A+góc B+góc C=180 độ(đúng)

b: Giả sử sin A=-sin(2A+B+C)

=>sinA=sin(-2A-B-C)

=>A=-2A-B-C+k*360 độ hoặc A=180 độ+2A+B+C+k*360 độ

=>-A-B-C=-180 độ

=>góc A+góc B+góc C=180 độ

=>Đúng

c: Giả sử cos C=-cos(A+B+2C)

=>cosC=cos(180 độ-góc A-góc B-2*góc C)

=>góc C=180 độ-góc A-góc B-2*góc C+k*360 độ hoặc góc C=-180 độ+góc A+góc B+2*góc C+k*360 độ

=>3*góc C+góc A+góc B=180 độ(loại) hoặc góc A+góc B+góc C=180 độ+k*360 độ

=>góc A+góc B+góc C=180 độ(đúng)

NV
28 tháng 1 2021

\(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\) \(\Rightarrow sin^2A+sin^2B=\dfrac{a^2+b^2}{4R^2}=\dfrac{9+36}{4R^2}=\dfrac{45}{4R^2}\)

Trong khi đó \(3sin^2C=\dfrac{3.17}{4R^2}=\dfrac{51}{4R^2}\)

Đề bài sai

20 tháng 6 2020

ta có A+B+C = ∏∏

nên C=∏∏ -(A+B)

   nên ta có sin(A+B)=sinC , cos(A+B)=-cosC

ta có sin2A+sin2B+sin2C

      =2sin(A+B)cos(A-B) + 2 sinCcosC

      =2sinCcos(A-B)+2sinCcosC

      =2sinC ( cos(A-B) + cosC)

      =2sinC ( cos(A-B) - cos(A+B))

      =2sinC.2sinAsinB

      =4sinAsinBsinC