K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8

Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai

Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn

Vậy n+8 và n+1 là số  chính phương

\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)

\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)

\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)

\(\Leftrightarrow9\left(2n+7\right)=9^2\)

\(\Leftrightarrow2n-7=9\)

\(\Leftrightarrow n=8\)

Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)

                                                  

AH
Akai Haruma
Giáo viên
27 tháng 2 2021

Lời giải:

Không mất tổng quát giả sử $C$ là góc nhọn.

\(\sin ^2A+\sin ^2B+\sin ^2C=\frac{1-\cos 2A}{2}+\frac{1-\cos 2B}{2}+\sin ^2C\)

\(=1+\sin ^2C-\frac{1}{2}(\cos 2A+\cos 2B)=1+\sin ^2C-\cos (A+B)\cos (A-B)\)

\(=1+\sin ^2C-\cos (180^0-C)\cos (A-B)\)

\(=1+\sin ^2C+\cos C\cos (A-B)=2-\cos ^2C+\cos C\cos (A-B)\)

\(\leq 2-\cos ^2C+\cos C\)  với mọi $C$ nhọn

\(=\frac{9}{4}-(\cos C-\frac{1}{2})^2\leq \frac{9}{4}\)

Do đó mệnh đề đã cho đúng.

 

 

8 tháng 9 2020

Mệnh đề đúng.

Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)

Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)

8 tháng 9 2020

\(\left(2n-1\right)^2-1\) 

\(=4n^2-4n+1-1\) 

\(=4n^2-4n\) 

\(=4n\left(n-1\right)⋮4\forall n\) 

Vậy mệnh đề trên đúng 

Mệnh đề phủ định của mệnh đề trên 

\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4 

26 tháng 8 2018

Với mọi n thuộc tập số nguyên, n + 1 lớn hơn n

Mệnh đề này đúng

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

(1) “Nếu ABC là tam giác đều thì nó là tam giác cân” là mệnh đề đúng.

(2) “Nếu 2a – 4 >0 thì a > 2” là mệnh đề đúng.

b) Trong mệnh đề (1) “Nếu ABC là tam giác đều thì  là tam giác cân

P: “ABC là tam giác đều”

Q: “ABC là tam giác cân”

Trong mệnh đề (2) “Nếu 2a – 4 > 0 thì a > 2

P: “2a – 4 > 0”

Q: “a > 2”

Chú ý

Từ “” trong mênh đề (1) được hiểu là “ABC”. Do đó khi chỉ ra mệnh đề Q, ta dùng “ABC” thay cho “nó” để mệnh đề được rõ nghĩa.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Phát biểu: “Với mọi số thực, tổng của bình phương của nó và 1 luôn nhỏ hơn hoặc bằng 0”

Mệnh đề này sai, vì \(\forall x \in :{x^2} \ge 0\; \Rightarrow {x^2} + 1 \ge 1 > 0\)

20 tháng 3 2019

Đáp án C

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
a. Đúng, vì $x=0$ thì $x+1=1$, mà $0\vdots 1$

Mệnh đề phủ định:

$\forall x\in\mathbb{N}; x\not\vdots x+1$

b. Sai, vì $x=0$ thì $0^2<1$

Mệnh đề phủ định: $\exists x\in\mathbb{Z}, x\geq -1\Rightarrow x^2< 1$

26 tháng 8 2021

câu a có trường hợp x = 1 thì sao ạ ?