K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

loading...  loading...  loading...  

19 tháng 11 2019

A: “∀ n ∈ N: n chia hết cho n”

A : “∃ n ∈ N: n không chia hết cho n”.

A đúng vì với n = 0 thì n không chia hết cho n.

1 tháng 10 2019

∀ n ∈ Z: n ≤ n 2 . Mệnh đề đúng

16 tháng 10 2023

loading...  loading...  loading...  loading...  loading...  loading...  

9 tháng 9 2017

đề có sai o bn

đề phải là : xét tính đúng sai của mệnh đề và lập mệnh đề phủ định của nó.

nN; n2 + 1 không chia hết cho 4 mới đúng chứ .

NV
23 tháng 10 2020

Phủ định:

\(\overline{A}="\forall x\in R;x^2-6x+9>0"\)

Mệnh đề phủ định là mệnh đề sai

Phản ví dụ: \(x=3\) thì \(x^2-6x+9=0\)

8 tháng 9 2020

Mệnh đề đúng.

Vì \(\left(2n-1\right)^2-1=4n^2-4n+1-1=4\left(n^2-n\right)⋮4,\forall n\inℕ\)

Phủ định: \(\exists n\inℕ,\left(2n-1\right)^2-1⋮̸4\)

8 tháng 9 2020

\(\left(2n-1\right)^2-1\) 

\(=4n^2-4n+1-1\) 

\(=4n^2-4n\) 

\(=4n\left(n-1\right)⋮4\forall n\) 

Vậy mệnh đề trên đúng 

Mệnh đề phủ định của mệnh đề trên 

\(\exists x\in R:\left(2n-1\right)^2-1\) không chia hết cho 4 

ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8

Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai

Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn

Vậy n+8 và n+1 là số  chính phương

\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)

\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)

\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)

\(\Leftrightarrow9\left(2n+7\right)=9^2\)

\(\Leftrightarrow2n-7=9\)

\(\Leftrightarrow n=8\)

Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)

                                                  

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

+) Mệnh đề phủ định của mệnh đề P là \(\overline P \): “5,15 không phải là một số hữu tỉ”

Mệnh đề P đúng, \(\overline P \) sai vì \(5,15 = \frac{{103}}{{20}} \in \mathbb{Q}\), là một số hữu tỉ.

+) Mệnh đề phủ định của mệnh đề Q là \(\overline Q \): “2 023 không phải là số chẵn” (hoặc “2 023 là số lẻ”)

Mệnh đề Q sai, \(\overline Q \) đúng vì 2 023 có chữ số tận cùng là \(3 \ne \left\{ {0;2;4;6;8} \right\}\), đo đó 2 023 không phải là số chẵn.

23 tháng 9 2023

P: đúng

phủ định: "5,15 không phải số hữu tỉ"

Q: sai

Phủ định: "1023 không phải số chẵn"