Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>50x+50=0
=>50x=-50
=>x=-1
b: \(\Leftrightarrow5^{2x-1}=5^3\)
=>2x-1=3
=>2x=4
=>x=2
c: \(\Leftrightarrow3^{x-1}+6\cdot3^{x-1}=7\cdot3^6\)
=>3^x-1=3^6
=>x-1=6
=>x=7
a) \(|\dfrac{3}{5}x|=|-\dfrac{1}{6}|\)
\(\Rightarrow|\dfrac{3}{5}x|=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{1}{6}\) hoặc \(\dfrac{3}{5}x=-\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}:\dfrac{3}{5}\) hoặc \(x=-\dfrac{1}{6}:\dfrac{3}{5}\)
\(\Rightarrow x=\dfrac{1}{6}.\dfrac{5}{3}\) hoặc \(x=-\dfrac{1}{6}.\dfrac{5}{3}\)
\(\Rightarrow x=\dfrac{5}{18}\) hoặc \(x=-\dfrac{5}{18}\)
b) \(|2x-3|+0,5=\dfrac{1}{3}:2\)
\(\Rightarrow|2x-3|+\dfrac{1}{2}=\dfrac{1}{3}.\dfrac{1}{2}\)
\(\Rightarrow|2x-3|+\dfrac{1}{2}=\dfrac{1}{6}\)
\(\Rightarrow|2x-3|=\dfrac{1}{6}-\dfrac{1}{2}=-\dfrac{1}{3}\)
Vì \(|2x-3|\ge0\forall x\)
=> Không tồn tại x thỏa mãn
c)\(|x-\dfrac{5}{6}|=2\left(x+\dfrac{1}{2}\right)\)
\(\Rightarrow|x-\dfrac{5}{6}|=2x+1\)
\(\Rightarrow x-\dfrac{5}{6}=2x+1\) hoặc \(x-\dfrac{5}{6}=-2x-1\)
\(\Rightarrow-\dfrac{5}{6}-1=2x-x\) hoặc \(-\dfrac{5}{6}+1=-2x-x\)
\(\Rightarrow-\dfrac{11}{6}=x\) hoặc \(\dfrac{1}{6}=-3x\)
\(\Rightarrow x=-\dfrac{11}{6}\) hoặc \(x=\dfrac{1}{6}:\left(-3\right)=\dfrac{1}{6}.\left(\dfrac{1}{-3}\right)=\dfrac{1}{-18}\)
Lời giải:
Nếu $a\neq 0$ thì đa thức $M$ có bậc là $12+3=15\neq 5$ (trái với đề bài)
Nếu $a=0$ thì $M=-2xy+6x^3y^2$ có bậc $3+2=5$ (thỏa mãn)
Vậy $a=0$
---------------------
$N=-3xy^4+6x^3y^7+(a+1)x^3y^7-7xy$
$=-3xy^4+(a+7)x^3y^7-7xy$
Nếu $a+7\neq 0$ thì bậc của $N$ là $3+7=10\neq 5$ (trái đề)
Nếu $a+7=0$ thì $N=-3xy^4-7xy$ có bậc $1+4=5$ (thỏa đề)
Vậy $a+7=0\Leftrightarrow a=-7$
sắp xếp:
C= \(x^5\) + 3\(x^4\) - 2\(x^3\) - 9\(x^2\) + 11x - 6
B= \(x^5\) + \(3x^4\) - \(2x^3\) - \(10x^2\) +9x + 4
B= \(x^5\) + \(3x^4\) - \(2x^3\) - \(10x^2\) +9x + 4
+
- C= \(x^5\) - 3\(x^4\) + 2\(x^3\) + 9\(x^2\) - 11x + 6
M = \(2x^5\) - \(x^2\) - 2x + 10
Ta có M = B - C
\(\Rightarrow M=[3x^4+x^5-2\left(x^3+4\right)-10x^2+9x]\\ \\ -\left(x^5-2x^3+3x^4-9x^2+11x-6\right)\)
\(\Rightarrow M=3x^4+x^5-2x^3+4-10x^2+9x\\ -x^5+2x^3-3x^4+9x^2-11x+6\)
\(\Rightarrow M=\left(3x^4-3x^4\right)+\left(x^5-x^5\right)+\left(-2x^3+2x^3\right)\\ +\left(4+6\right)+\left(-10x^2+9x^2\right)+\left(9x-11x\right)\)
\(\Rightarrow M=10-x^2-2x\)
Vậy \(M=10-x^2-2x\)
1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)
\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)
\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)
\(\Leftrightarrow x=-16\)
2)3)4) tương tự
Gợi ý : 2) cộng 3 vào cả hai vế
3)4) cộng 2 vào cả hai vế
5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)
\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)
\(\Leftrightarrow x=-21\)
6) sửa VT = 4 rồi tương tự câu 5)
|3x + \(\frac{1}{2}\) | + |3x + \(\frac{1}{6}\)| + |3x + \(\frac{1}{12}\)| + ... + |3x + \(\frac{1}{380}\)| = 58x
Vì |3x + \(\frac{1}{2}\) | + |3x + \(\frac{1}{6}\)| + |3x + \(\frac{1}{12}\)| + ... + |3x + \(\frac{1}{380}\)| ≥ 0
\(\Leftrightarrow\) 58x ≥ 0
\(\Leftrightarrow\) x ≥ 0
Khi đó:
|3x + \(\frac{1}{2}\) | + |3x + \(\frac{1}{6}\)| + |3x + \(\frac{1}{12}\)| + ... + |3x + \(\frac{1}{380}\)| =
(3x + \(\frac{1}{2}\)) + (3x + \(\frac{1}{6}\)) + ... + (3x + \(\frac{1}{380}\)) = 58x
\(\Leftrightarrow\) (3x + \(\frac{1}{1.2}\)) + (3x + \(\frac{1}{2.3}\)) + ... + (3x + \(\frac{1}{19.20}\)) = 58x
\(\Leftrightarrow\) (3x + 3x + ... + 3x) + (\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + ... + \(\frac{1}{19.20}\)) = 58x
\(\Leftrightarrow\) 3x\(\left[\left(19-1\right):1+1\right]\) + (1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + ... + \(\frac{1}{19}\) - \(\frac{1}{20}\)) = 58x
\(\Leftrightarrow\) 57x + (1 - \(\frac{1}{20}\)) = 58x
\(\Leftrightarrow\) x = \(\frac{19}{20}\)
a: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
\(\Leftrightarrow2^x=2^{10}\cdot5:\dfrac{5}{2}=2^{10}\cdot5\cdot\dfrac{2}{5}=2^{11}\)
=>x=11
b: \(\Leftrightarrow3^x\cdot\dfrac{1}{3}+3^x\cdot9=3^{13}\cdot28\)
\(\Leftrightarrow3^x=3^{13}\cdot28:\dfrac{28}{3}=3^{14}\)
hay x=14
a) Ta có: \(\left[\frac{3}{7}\cdot\frac{4}{15}+\frac{1}{3}\cdot\left(9^{15}\right)\right]^0\cdot\frac{1}{3}\cdot\frac{6^{12}}{12^4}\)
\(=\frac{1}{3}\cdot\frac{6^{12}}{6^4\cdot2^4}=\frac{6^{12}}{6^4\cdot48}=\frac{\left(6^4\right)^3}{6^4\cdot48}=\frac{6^8}{48}=34992\)
b) Ta có: \(\frac{10^2\cdot81-16\cdot15^2}{4^4\cdot675}=\frac{2^2\cdot5^2\cdot3^4-2^4\cdot3^2\cdot5^2}{2^8\cdot3^3\cdot5^2}\)
\(=\frac{2^25^23^2\left(3^2-2^2\right)}{\left(2^2\right)^4\cdot3^3\cdot5^2}=\frac{\left(3^2-2^2\right)}{64\cdot3}=\frac{5}{192}\)
\(m=\sqrt[3]{6}\)
`m^3=6`
`to m=\(\sqrt[3]{6}\)