K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

mình nghĩ là đề như vậy:

\(\frac{24}{8.16}-\frac{40}{16.24}+\frac{56}{24.32}-\frac{72}{32.40}=\frac{8+16}{8.16}-\frac{16+24}{16.24}+\frac{24+32}{24.32}-\frac{32+40}{32.40}\)

\(=\frac{8}{8.16}+\frac{16}{8.16}-\frac{16}{16.24}-\frac{24}{16.24}+\frac{24}{24.32}+\frac{32}{24.32}-\frac{32}{32.40}-\frac{40}{32.40}\)

\(=\frac{1}{16}+\frac{1}{8}-\frac{1}{24}-\frac{1}{16}+\frac{1}{32}+\frac{1}{24}-\frac{1}{40}-\frac{1}{32}\)

\(=\frac{1}{8}-\frac{1}{40}=\frac{1}{10}\)

27 tháng 11 2016

Đặt hai biểu thức trên là A và B ta có:

b)  A = 31989 = 81497.3 có chữ số tận cùng là 1.3 = 3.

a) B = 2999 + 32999 = 16249 . 8 ( có chữ số tận cùng là 8 ) + 81749 . 27 ( có chữ số tận cùng là 7 ). Vậy B có chữ số tận cùng là 5.

29 tháng 3 2020

a, 2999 = 2249.4+3=2249.4 . 23 = (.....6).8=(........8). Vậy 2999 có chữ số tận cùng là 8

b, 3999=3249.4+3=3249.4.33=(......1) . (....7) =(....7) . Vậy 3999 có chữ số tận cùng là 7

Ta có :

197 ≤ xx + xx < 199

=> 197 ≤ 2 . xx < 199

=> 98,5 ≤ xx < 99,5

=> xx = 99 ( do xx ∈ N )

Vậy xx = 99

5 tháng 10 2015

A = 2015 + 20152 + ... + 201520

2014.A = 2015.A - A = (20152 + 20153 + ... + 201521) - (2015 + 20152 + ... + 201520) = 201521 - 2015 

=> A = \(\frac{2015^{21}-2015}{2014}\)

B = 3 + 32 + ... + 399

2.B = 3.B - B = (32 + 33 + ... + 3100) - (3 + 32 + ... + 399) = 3100 - 3

=> B = \(\frac{3^{100}-3}{2}\)

23 tháng 5 2017

Ta có:

1/2^2+1/3^2+.....+1/20^2>1/2.2+1/3.4+1/4.5+.....+1/20.21

                                     =1/4+1/3-1/21

                                      =1/4+6/21

                                      =45/84>1/2

Ta có:

1/2^2+1/3^2+..........+1/20^2<1/1.2+1/2.3+.....+1/19.20

                                           =1-1/20

                                           =19/20<1

23 tháng 5 2017

A = 1 - 1/20

= 19/20

Thử: 1/2 < 19/20 < 1

Đs: 19/20

24 tháng 5 2017

xét A và B có :

\(\frac{42}{47}\)<\(\frac{42}{45}\) (1)

theo tính chất bắc cầu ta có ;

\(\frac{37}{51}\)+\(\frac{14}{51}\)=1        ;         \(\frac{29}{37}\)+\(\frac{8}{37}\)=1  

\(\frac{31}{35}\)+\(\frac{4}{35}\)=1          ;          \(\frac{49}{63}\)+\(\frac{14}{63}\)=1

Mà \(\frac{14}{51}\)>\(\frac{14}{63}\)=> \(\frac{37}{51}\)\(\frac{49}{63}\)(2)

ta lại có :  \(\frac{4}{35}\)=\(\frac{8}{70}\)( nhân cả tử và mẫu vs 2 )

mà \(\frac{8}{70}\)<\(\frac{8}{37}\)nên \(\frac{4}{35}\)<\(\frac{8}{37}\)=>\(\frac{29}{37}< \frac{31}{35}\)(3)

Từ (1) ; (2);(3)=>\(\frac{42}{47}+\frac{37}{51}+\frac{29}{37}< \frac{42}{45}+\frac{49}{63}+\frac{31}{35}\)

5 tháng 5 2017

Nếu A= thì 

Ta có 2/2^2 + 2/3^3 + 2/4^2 +... + 2/2016^2 + 2/ 2017^2 = 2( 1/ 2^2 + 1/3^2 + 1/ 4^2 +... + 1/2016^2 + 1/2017^2

Mà 2( 1/ 2^2 + 1/3^2 + 1/ 4^2 +... + 1/2016^2 + 1/2017^2 < 2( 1/1.2 + 1/2.3 + 1/ 3.4 + ... + 1/ 2015.2016 + 1/2016 + 2017) = 2( 1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +... + 1/2015 - 1/ 2016 + 1/2016 - 1/2017) = 2( 1- 1/2017) = 2( 2016/2017) = 4032 / 2017< 2 =>  2( 1/ 2^2 + 1/3^2 + 1/ 4^2 +... + 1/2016^2 + 1/2017^2 < 2 =>  2/2^2 + 2/3^3 + 2/4^2 +... + 2/2016^2 + 2/ 2017^2 < 2 => A<2

5 tháng 5 2017

A= hay A- vậy bn