Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{4+9}{4.9}-\frac{14-9}{9.14}-\frac{14+19}{14.19}+\frac{19+24}{19.24}\)
\(=\frac{4}{4.9}+\frac{9}{4.9}-\frac{14}{9.14}-\frac{9}{9.14}-\frac{14}{14.19}+\frac{19}{14.19}+\frac{19}{19.24}+\frac{24}{19.24}\)
\(\frac{1}{9}+\frac{1}{4}-\frac{1}{9}-\frac{1}{14}-\frac{1}{19}+\frac{1}{14}+\frac{1}{19}+\frac{1}{24}\)
\(=\frac{1}{4}+\frac{1}{24}=\frac{7}{24}\)
AI THẤY ĐÚNG ỦNG HỘ NHA
Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{21.22}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{21}-\frac{1}{22}\)
\(A=\frac{1}{5}-\frac{1}{22}\)
\(A=\frac{17}{110}\)
\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+...+\(\frac{1}{21.22}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+...+\(\frac{1}{21}\)-\(\frac{1}{22}\)
=\(\frac{1}{5}\)-\(\frac{1}{22}\)
=\(\frac{17}{110}\)
xét A và B có :
\(\frac{42}{47}\)<\(\frac{42}{45}\) (1)
theo tính chất bắc cầu ta có ;
\(\frac{37}{51}\)+\(\frac{14}{51}\)=1 ; \(\frac{29}{37}\)+\(\frac{8}{37}\)=1
\(\frac{31}{35}\)+\(\frac{4}{35}\)=1 ; \(\frac{49}{63}\)+\(\frac{14}{63}\)=1
Mà \(\frac{14}{51}\)>\(\frac{14}{63}\)=> \(\frac{37}{51}\)< \(\frac{49}{63}\)(2)
ta lại có : \(\frac{4}{35}\)=\(\frac{8}{70}\)( nhân cả tử và mẫu vs 2 )
mà \(\frac{8}{70}\)<\(\frac{8}{37}\)nên \(\frac{4}{35}\)<\(\frac{8}{37}\)=>\(\frac{29}{37}< \frac{31}{35}\)(3)
Từ (1) ; (2);(3)=>\(\frac{42}{47}+\frac{37}{51}+\frac{29}{37}< \frac{42}{45}+\frac{49}{63}+\frac{31}{35}\)
\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}+\frac{1}{2}-\left(\frac{1}{3}-\frac{1}{9}\right)=1+\frac{1}{2}-\frac{1}{3}=1\frac{1}{6}\)
1. Tìm x
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)
\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=x\)
\(\Rightarrow1-\frac{1}{100}=x\)
\(\Rightarrow x=\frac{99}{100}\)
\(2.Tính\)
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
học vui!!
Xin lỗi nha. Bài 1 mk làm sai. Lại nè:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)
\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)=x\)
\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=x\)
\(\frac{1}{3}.\left(1-\frac{1}{100}\right)=x\)
\(\frac{1}{3}\cdot\frac{99}{100}=x\)
\(\frac{33}{100}=x\)
A = \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)= \(\frac{1}{3}-\frac{1}{10}=\frac{7}{30}\)
B = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
B = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)+ \(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
B = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
B = \(\frac{1}{2}-\frac{1}{10}\)
B = \(\frac{2}{5}\)
B=1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
B=1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
B=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
B=1/2-1/10
B=2/5
A = 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12
= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/11 - 1/12
= 1/5 - 1/12
= 12/60 - 5/60
= 7/60
Vậy A = 7/60.
Xét A , ta thấy:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
Ta lại thấy: \(\frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)
\(\frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
....................
\(\frac{1}{11.12}=\frac{1}{11}-\frac{1}{12}\)
\(A=\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+....+\left(\frac{1}{11}-\frac{1}{12}\right)\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}+\left(-\frac{1}{6}+\frac{1}{6}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+....+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
Ta có \(M=\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\)
mình nghĩ là đề như vậy:
\(\frac{24}{8.16}-\frac{40}{16.24}+\frac{56}{24.32}-\frac{72}{32.40}=\frac{8+16}{8.16}-\frac{16+24}{16.24}+\frac{24+32}{24.32}-\frac{32+40}{32.40}\)
\(=\frac{8}{8.16}+\frac{16}{8.16}-\frac{16}{16.24}-\frac{24}{16.24}+\frac{24}{24.32}+\frac{32}{24.32}-\frac{32}{32.40}-\frac{40}{32.40}\)
\(=\frac{1}{16}+\frac{1}{8}-\frac{1}{24}-\frac{1}{16}+\frac{1}{32}+\frac{1}{24}-\frac{1}{40}-\frac{1}{32}\)
\(=\frac{1}{8}-\frac{1}{40}=\frac{1}{10}\)