K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2021

ĐKXĐ: \(x>0\) ; \(x\ne1\)

\(\Leftrightarrow\dfrac{1}{2}log_x2^4+log_{2x}2^6=3\)

\(\Leftrightarrow2log_x2+6log_{2x}2=3\)

\(\Rightarrow\dfrac{2}{log_2x}+\dfrac{6}{log_22x}=3\)

\(\Leftrightarrow\dfrac{2}{log_2x}+\dfrac{6}{log_2x+1}=3\)

Đặt \(log_2x=t\)

\(\Rightarrow\dfrac{2}{t}+\dfrac{6}{t+1}=3\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}log_2x=2\\log_2x=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{\sqrt[3]{2}}\end{matrix}\right.\)

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

15 tháng 10 2020

a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0

\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)

\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)

\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)

Đặt \(\log_x2=a\left(a\in R\right)\)

Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)

\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)

Vậy pt đã cho vô nghiệm

15 tháng 10 2020

cái đó phải là \(-42\log_{16x}x\) nhé bạn

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

ĐKXĐ: \(x>0\)

Sử dụng công thức sau: \(\log_ax=\frac{\ln x}{\ln a}\) vào bài toán ta có:

\(\log_2x+\log_3x=\log_2x\log_3x\)

\(\Leftrightarrow \frac{\ln x}{\ln 2}+\frac{\ln x}{\ln 3}=\frac{\ln x}{\ln 2}.\frac{\ln x}{\ln 3}\)

\(\Leftrightarrow \ln x\left(\frac{1}{\ln 2}+\frac{1}{\ln 3}-\frac{\ln x}{\ln 2.\ln 3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\ln x=0\left(1\right)\\\dfrac{1}{\ln2}+\dfrac{1}{\ln3}=\dfrac{\ln x}{\ln2.\ln3}\end{matrix}\right.\left(2\right)\)

\((1)\Leftrightarrow x=1\) (thỏa mãn)

\((2)\Leftrightarrow \frac{\ln 2+\ln 3}{\ln 2.\ln 3}=\frac{\ln x}{\ln 2.\ln 3}\)

\(\Leftrightarrow \ln x=\ln 2+\ln 3=\ln 6\Rightarrow x=6\)

Vậy \(x\in\left\{1;6\right\}\)

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

10 tháng 7 2016

 

a)ĐK: 2x+1>0

\(\log_3\left(2x+1\right)=2\log_{2x+1}3+1\)

\(\Leftrightarrow log_3\left(2x+1\right)=2.\frac{1}{log_3\left(2x+1\right)}+1\)

Nhân \(log_3\left(2x+1\right)\)cả 2 vế

Đặt \(t=log_3\left(2x+1\right)\)

\(\Leftrightarrow t^2-t-2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=9\\2x+1=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-\frac{1}{3}\end{array}\right.\)nhận cả 2 nghiệm

b)ĐK x>0

\(\Leftrightarrow1+log^2_{27}x=\frac{10}{3}log_{27}x\)

Đặt \(t=log_{27}x\)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\left[\begin{array}{nghiempt}x=27^3\\x=3\end{array}\right.\)

 

NV
14 tháng 1 2022

ĐKXĐ: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)

\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)

\(\Rightarrow x>-\dfrac{5}{2}\)

Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)

4 tháng 5 2016

\(D=\log_{5^{-1}}\left(5^2\right)-3\log_{3^2}\left(3^{-1}\right)+4.\log_{2^{\frac{3}{2}}}2^6=-2+\frac{3}{2}+16=\frac{31}{2}\)