K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C16 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích Vietnam TST, 1996: Chứng minh rằng với x,y,z là các số thực bất kì ta có bất đẳng thức:

\(6\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le27xyz+10\left(x^2+y^2+z^2\right)^{\dfrac{3}{2}}\).

[Toán.C17 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích IMO, 1983: Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì:

\(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\).

[Toán.C18 _ 19.1.2021]

Người biên soạn câu hỏi: Nguyễn Bình An

Trích IMO, 2001: Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge1.\)

[Toán.C19 _ 19.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Trích Vasile Cirtoaje: Cho a,b,c,d lớn hơn hoặc bằng 0 thỏa mãn a + b + c + d = 4. Chứng minh rằng:

\(16+2abcd\ge3\left(ab+ac+ad+bc+bd+cd\right)\).

*4 câu hỏi này xin được tặng các bạn một chút GP khi các bạn giải được hoàn hảo. Mong các thầy cô sẽ trao giải cho các bạn!

3
19 tháng 1 2021

[Toán.C17_19.1.2021]

Gọi x, y, z là các số nguyên dương thỏa mãn \(a=x+y;b=y+z;c=z+x\)

Khi đó: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\left(1\right)\)

\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)\left(x-z\right)+\left(y+z\right)^2\left(z+x\right)\left(y-x\right)+\left(z+x\right)^2\left(x+y\right)\left(z-y\right)\ge0\)

\(\Leftrightarrow x^3z+y^3x+z^3y\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\left(2\right)\)

Áp dụng BĐT BSC:

\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\left(2\right)\) đúng \(\Rightarrow\left(1\right)\) đúng

20 tháng 1 2021

VietNam TST, 1996.

Chuẩn hóa \(x^2+y^2+z^2=1.\) Cần chứng minh:

\(6\left(x+y+z\right)\le27xyz+10\)

Ta có: \(1=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Rightarrow x^2y^2z^2\le\dfrac{1}{27}\Rightarrow-\dfrac{\sqrt{3}}{9}\le xyz\le\dfrac{\sqrt{3}}{9}\)

Do đó: \(VP\ge27\cdot\left(-\dfrac{\sqrt{3}}{9}\right)+10=10-3\sqrt{3}>0.\)

Nếu $x+y+z<0$ thì $VP>0>VT$ nên ta chỉ xét khi $x+y+z\geq 0.$

Đặt $\sqrt{3}\geq p=x+y+z>0;q=xy+yz+zx,r=xyz.$

Bất đẳng thức cần chứng minh tương đương với:\(6p\le27r+10\quad\left(1\right)\)

Mà \(x^2+y^2+z^2=1\Leftrightarrow p^2-2q=1\Rightarrow q=\dfrac{\left(p^2-1\right)}{2}\quad\left(2\right)\)

Ta có: $$(x-y)^2(y-z)^2(z-x)^2\geq 0.$$

Chuyển sang \(\textit{pqr}\) và kết hợp với $(2)$ suy ra \({\dfrac {5\,{p}^{3}}{54}}-\dfrac{p}{6}-{\dfrac {\sqrt {2 \left(3- {p}^{2} \right) ^{3}}}{54}}\leq r \)

Từ đây thay vào $(1)$ cần chứng minh:

$$\dfrac{5}{2}p^3-\dfrac{21}{2}p+10\geqslant \dfrac{1}{2}\sqrt{2\left(3-p^2\right)^3}$$

Hay là $$\dfrac{1}{4} \left( 27\,{p}^{4}+54\,{p}^{3}-147\,{p}^{2}-148\,p+346 \right) \left( p-1 \right) ^{2}\geqslant 0.$$

Đây là điều hiển nhiên.

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>Cuộc thi Toán Tiếng Anh VEMC | FacebookNếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: [Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫuNhững câu hỏi được chọn sẽ khả năng cao trở thành những bài đặc biệt được Cộng đồng lưu ý giải và thảo luận. Những bài toán...
Đọc tiếp

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Những câu hỏi được chọn sẽ khả năng cao trở thành những bài đặc biệt được Cộng đồng lưu ý giải và thảo luận. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C13 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trúc Giang

Cho hình bình hành ABCD có M, N, P, Q là trung điểm của AB, BC, CD, AD. Biết diện tích ABC = 60 m2. Tính diện tích MNPQ (Giải bằng nhiều cách).

[Toán.C14 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trọng Chiến

Tìm tất cả các số nguyên dương N có 2 chữ số sao cho tổng tất cả các chữ số của số \(10^N-N\) chia hết cho 170.

1
1 tháng 11 2021

khó thế khi nào em lên lớp 10 em giải cho

Đề mình tổng hợp cho các bạn thi hsg toán 9.+) Yêu cầu:Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?Ví dụ: Bài 1: Giải:....Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12Đề bài: Câu 1:a)...
Đọc tiếp

Đề mình tổng hợp cho các bạn thi hsg toán 9.

+) Yêu cầu:

Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?

Ví dụ: Bài 1: Giải:....

Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.

+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12

Đề bài: 

Câu 1:

a) Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức: \(A=x^5-4x^4+x^3-x^2-2x+2019\)

b) Cho \(x=\sqrt[3]{2+2\sqrt{3}}+\sqrt[3]{2-2\sqrt{3}}-1\). Tính giá trị biểu thức \(P=x^3\left(x^2+3x+9\right)^3\)

Câu 2:

a) Giải phương trình \(\frac{\left(x-4\right)\sqrt{x-2}-1}{\sqrt{4-x}+x-5}=\frac{2+\left(2x-4\right)\sqrt{x-2}}{x-1}\)

b) Giải hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{x+2}+\sqrt{x+3}=\sqrt{y-1}+\sqrt{y-2}+\sqrt{y-3}\\x^2+y^2=10\end{cases}}\)

Câu 3:

a) Cho hai đa thức \(f\left(x\right)=\frac{1}{x}+\frac{1}{x-2}+\frac{1}{x-4}+...+\frac{1}{x-2018}\)và \(g\left(x\right)=\frac{1}{x-1}+\frac{1}{x-3}+\frac{1}{x-5}+...+\frac{1}{x-2017}\)

Chứng minh rằng :\(\left|f\left(x\right)-g\left(x\right)\right|>2\)với x là các số nguyên thỏa mãn 0 < x < 2018

b) Cho m, n là hai số nguyên dương lẻ sao cho \(n^2-1\)chia hết cho \(\left|m^2-n^2+1\right|\). Chứng minh rằng \(\left|m^2-n^2+1\right|\)là số chính phương

c) Tìm nghiệm nguyên dương của phương trình \(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)với điều kiện x, y là các số nguyên tố

d) Chứng minh rằng phương trình \(x^{15}+y^{15}+z^{15}=19^{2003}+7^{2003}+9^{2003}\)không có nghiệm nguyên

Câu 4:

a) Cho điểm A cố định thuộc trên đường tròn (O; R). BC là dây cung của đường tròn (O; R), BC di động và tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Tiếp tuyến tại B, C của đường tròn (O) cắt nhau ở G. Gọi S là giao điểm của GD và EF. Chứng minh rằng đường thẳng SH luôn đi qua một điểm cố định.

b) Cho tam giác ABC vuông tại C, D là chân đường cao vẽ từ C. Cho X là điểm bất kì thuộc đoạn thẳng CD (X khác C và D). Cho K là điểm trên đoạn thẳng AX sao cho BK = BC. Tương tự L là điểm trên đoạn thẳng BX sao cho AL = AC. Cho M là giao điểm của AL và BK. Chứng minh rằng MK = ML

Câu 5:

a)  Cho a, b, c là các số thực dương thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng:\(8\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+9\ge10\left(a^2+b^2+c^2\right)\)

b) Cho tập hợp X = {0;1;2;...;14}. Gọi A là một tập hợp gồm 6 phần tử được lấy ra từ X. Chứng minh rằng trong các tập hợp con thực sự của A luôn tìm được hai tập có tổng các phần tử bằng nhau . (Tập hợp con thực sự của tập Y là tập con của Y khác tập rỗng và khác Y)

P/s: Đề bài tổng hợp có gì sai sót mong các bạn góp ý  và bổ sung  không cãi nhau; spam gây mất trật tự. 

12
1 tháng 9 2020

Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))

sol nhẹ vài bài

\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)

\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\) 

Khi đó \(z-y⋮x;z+y+3⋮x\)

Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\) 

Trường hợp này loại

Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)

Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)

\(\Rightarrow z< x+y\)

Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)

Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)

Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và  \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)

\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z

\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)

\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)

Vậy.............

1 tháng 9 2020

Bài 1 : Giải :

a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)

\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)

\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)

\(\Rightarrow x+1=x\sqrt[3]{2}\)

\(\Rightarrow\left(x+1\right)^3=2x^3\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)

\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)

\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)

\(=2020\)

P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

19 tháng 7 2016

bài 28

\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)

=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)

=>\(P=1\)

19 tháng 7 2016

Bài 30 phải là xy+y+x=3.

Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)

            yz+y+z=8 => (y+1)(z+1)=9(2)

           zx+x+z=15 => (x+1)(z+1)=16(3)

Nhân (1), (2) và (3) theo vế, ta có:

           [(x+1)(y+1)(z+1)]2=576

     =>  (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)

Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.

Kết quả: P=43/6 hoặc P=-79/6

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc...
Đọc tiếp

BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)

Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)

BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.

Ví dụ 1\(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0

Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)

\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)

Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)

Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)

Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng) 

Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*)  với k = 4/3 ta được đpcm. 

Lời giải xin để cho mọi người.

PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487

Ví dụ 2: Cho x,y,z > 0  và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)

Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)

 

4
16 tháng 5 2020

Bài toán hay dùng BĐT Vacs\(\sqrt{a^2-a+1\:}+\sqrt{b^2-b+1}+\sqrt{c^2-c+1}\ge a+b+c\)

Kết hợp giữa việc sử dụng phương pháp tiếp tuyến và tinh ý nhận ra bổ đề Vacs

Chú tth thử làm nhứ. Trong TKHĐ của t có sol rồi nha !!!!

17 tháng 5 2020

zZz Cool Kid_new zZz cách bác thì nhất rồi cách t thì chả khá gì a Thắng bên AoPS t nhớ có sol dùng Vacs lâu rồi mà

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

21 tháng 8 2017

a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)

bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đẳng thức cô si cho 2 số dương ta có

\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đăng thức trên ta đc

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn