Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1^2-\left(x-7\right)^{5^2}\right]=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^5\right]\left[1+\left(x-7\right)^5\right]=0\)
=>(x-7)x+1=0 hoặc 1-(x-7)5=0 hoặc 1+(x-7)5=0
+)Nếu (x-7)x+1=0
=>x-7=0
=>x=7
+)Nếu 1-(x-7)5=0
=>(x-7)5=1
=>x-7=1
=>x=8
+)Nếu 1+(x-7)5=0
=>(x-7)5=-1
Vì \(\left(x-7\right)^5\ge0\) với mọi x
=>không tìm được x thỏa mãn 1+(x-7)5=0
Vậy x=7 hoặc x=8
a) \(\frac{1}{4}+\frac{1}{3}\div\left(2x-1\right)=-5\)
\(\Leftrightarrow\frac{1}{3}\div\left(2x-1\right)=-5-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3}\div\left(2x-1\right)=\frac{-20}{4}-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3}\div\left(2x-1\right)=\frac{-21}{4}\)
\(\Leftrightarrow\left(2x-1\right)=\frac{1}{3}\div\frac{-21}{4}\)
\(\Leftrightarrow\left(2x-1\right)=\frac{-4}{63}\)
\(\Leftrightarrow2x=\frac{-4}{63}+1\)
\(\Leftrightarrow2x=\frac{-4}{63}+\frac{63}{63}\)
\(\Leftrightarrow2x=\frac{59}{63}\)
\(\Leftrightarrow x=\frac{59}{63}\div2\)
\(\Leftrightarrow x=\frac{59}{126}\)
b) \(-\left(5\frac{3}{8}+x-7\frac{5}{24}\right)\div2019\frac{11}{37}=0\)
\(\Leftrightarrow-\left(5\frac{3}{8}+x-7\frac{5}{24}\right)=0.2019\frac{11}{37}\)
\(\Leftrightarrow-5\frac{3}{8}-x+7\frac{5}{24}=0\)
\(\Leftrightarrow\frac{-43}{8}-x+\frac{173}{24}=0\)
\(\Leftrightarrow\frac{-129}{24}-x+\frac{173}{24}=0\)
\(\Leftrightarrow-x+\frac{44}{24}=0\)
\(\Leftrightarrow x=\frac{44}{24}-0\)
\(\Leftrightarrow x=\frac{44}{24}=\frac{11}{6}\)
\(a)\) \(\left(2x+1\right)\left(2x-3\right)=7\)
Có \(4\) trường hợp :
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+1=1\\2x-3=7\end{cases}\Leftrightarrow\hept{\begin{cases}2x=0\\2x=10\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=5\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+1=-1\\2x-3=-7\end{cases}\Leftrightarrow\hept{\begin{cases}2x=-2\\2x=-4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=-2\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+1=7\\2x-3=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=6\\2x=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\x=2\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+1=-7\\2x-3=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=-8\\2x=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-4\\x=1\end{cases}}}\)
Vậy không có giá trị nào của x thoả mãn đề bài
\(b)\) \(x\left(x-7\right)+3\left(x-7\right)=11\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x-7\right)=11\)
Có \(4\) trường hợp :
\(\Leftrightarrow\)\(\hept{\begin{cases}x+3=1\\x-7=11\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\x=18\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+3=-1\\x-7=-11\end{cases}\Leftrightarrow\hept{\begin{cases}x=-4\\x=-4\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+3=11\\x-7=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\x=8\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+3=-11\\x-7=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-14\\x=6\end{cases}}}\)
Vậy \(x\in\left\{-4;8\right\}\)
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
a, \(x^2-9=0\Rightarrow x^2=9\Rightarrow x\pm3\)
b, \(\left(x-3\right)^2-25=0\Rightarrow\left(x-3\right)^2=25\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
c, \(\left(x-3\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
d, \(\left(x-3\right)x-2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
e, \(3x\left(x-1\right)-5\left(1-x\right)=0\)
\(\Rightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
g, \(x^2+6x-7=0\)
\(\Rightarrow x^2-x+7x-7=0\)
\(\Rightarrow x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
h,\(2x^2+5x-7=0\)
\(\Rightarrow2x^2-2x+7x-7=0\)
\(\Rightarrow2x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Chúc bạn học tốt!!!
a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) vậy \(x=3;x=-3\)
b) \(\left(x-3\right)^2-25=0\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
vậy \(x=8;x=-2\)
c) \(\left(x-3\right)\left(2x-5\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
vậy \(x=3;x=\dfrac{5}{2}\)
d)\(\left(x-3\right).x-2\left(x-3\right)=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) vậy \(x=2;x=3\)
e) \(3x\left(x-1\right)-5\left(1-x\right)=0\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-5}{3};x=1\)
câu e t thấy sai sai nhưng vẫn làm ; bn coi lại đề nha
g) \(x^2+6x-7=0\Leftrightarrow x^2-x+7x-7=0\)
\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(x+7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\) vậy \(x=-7;x=1\)
h) \(2x^2+5x-7=0\Leftrightarrow2x^2-2x+7x-7=0\)
\(\Leftrightarrow2x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(2x+7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-7}{2};x=1\)
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\\left[{}\begin{matrix}x-7=-1\\x-7=1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=6\\x=8\end{matrix}\right.\)
Vậy x = 7 hoặc x = 6 hoặc x = 8
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-7=0\\x-7=\pm1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=\pm1+7\end{matrix}\right.\)
vậy x={6;7;8}