Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
- 2 bn kia ở trong câu hỏi này có ai làm đúng đâu.
- Chúc bạn học tốt !
- Tk cho mk nha !
\(a\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\\ =>\left(x-\frac{1}{2}\right)=\frac{1}{3}\\ =>x=\frac{1}{3}+\frac{1}{2}\\ =>x=\frac{5}{6}\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\\ =>\left(x+\frac{1}{2}\right)=\frac{2}{5}\\ =>x=\frac{-1}{10}\)
d) (2x+3)2016=(2x+3)2018 khi 2x+3=0 hoặc 1
Nếu 2x+3=0
=2x=-3 ( loại )
Nếu 2x+3=1
=>2x=-2
=>x=-1 ( thỏa )
Ta có : (x - 3)2016 \(\ge0\left(\forall x\right)\)
(y - 4)2018 \(\ge0\left(\forall x\right)\)
Mà (x - 3)2016 + (y - 4)2018 = 0
Suy ra : \(\hept{\begin{cases}\left(x-3\right)^{2016}=0\\\left(y-4\right)^{2018}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-3=0\Rightarrow x=3\\y-4=0\Rightarrow y=4\end{cases}}\)
\(\left(x-1\right)^{2016}=\left(1-x\right)^{2018}\)
\(\Rightarrow\left(x-1\right)^{2016}=-\left(x-1\right)^{2018}\)
\(\Rightarrow\left(x-1\right)^{2016}=\left(x-1\right)^{2018}\)
\(\Rightarrow\left(x-1\right)^{2016}-\left(x-1\right)^{2018}=0\)
\(\Rightarrow\left(x-1\right)^{2016}.\left(1-\left(x-1\right)^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{2016}=0\\1-\left(x-1\right)^2=0\end{cases}}\)
nốt nha
\(\left(x-1\right)^{2016}=\left(1-x\right)^{2018}\)
hai vế có mũ là 2016 và 2018 thì đổi ra bằng 0 vì số rất lớn
\(\Rightarrow x\in\left\{1;2\right\}\)
a) Vì \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(x-3=0\)
\(\Rightarrow x=3\)
Vậy với nghiệm nguyên \(x=3\)thì phương trình đạt GTNN là A=2018
b)Vì \(\left|x-5\right|\ge0\)
\(\Rightarrow\left|x-5\right|+2016\ge2016\)
Dấu "=" xảy ra khi \(x-5=0\)
\(\Rightarrow x=5\)
Vậy với nghiệm nguyên \(x=5\)thì phương trình đạt GTNN là B=2016
c) \(\text{C}=\frac{7}{x-3}\)nhỏ nhất khi \(x-3\)âm và đạt giá trị lớn nhất
\(\Rightarrow x-3< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-3\le-1\)
Dấu "=" xảy ra khi \(x=-1+3=2\)
Vậy với nghiệm nguyên \(x=2\)thì phương trình đạt GTNN là \(\text{C}=\frac{7}{2-3}=-7\)
d)\(\text{D}=\frac{x+8}{x-5}=\frac{x-5+13}{x-5}=\frac{x-5}{x-5}+\frac{13}{x-5}=1+\frac{13}{x-5}\)
D nhỏ nhất khi \(1+\frac{13}{x-5}\)nhỏ nhất
\(1+\frac{13}{x-5}\)nhỏ nhất khi \(\frac{13}{x-5}\)nhỏ nhất
\(\frac{13}{x-5}\)nhỏ nhất khi \(x-5\)âm và đạt GTLN
\(\Rightarrow x-5< 0\)
Mà \(x\in Z\)
\(\Rightarrow x-5\le-1\)
Dấu "=" xảy ra khi \(x=-1+5=4\)
Vậy với \(x=4\)thì biểu thức đạt GTNN là \(\text{D}=1+\frac{4+8}{4-5}=1+\frac{12}{-1}=1-12=-11\)
~Học tốt^^~
Phần kết luận: Vậy với x=...... thì "biểu thức"...
em sửa lại từ phương trình -> biểu thức nha :v a ghi vội nên không để ý
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
a) \(\left(8^{2019}-8^{2018}\right):\left(8^{2016}.8^2\right)\)
\(=8^{2018}\left(8-1\right):8^{2016+2}\)
\(=8^{2018}.7:8^{2018}=7\)
b) Em tham khảo link : Câu hỏi của ✽❤Girl cute❤✽ - Toán lớp 6 - Học toán với OnlineMath
a: =>15-(x-2)=-13-27=-40
=>x-2=15+40=55
hay x=57
b: =>5-x=-114+12=-102
=>x=107
c: \(\Leftrightarrow\left|x\right|=-1-5=-6\)(vô lý)
d: \(\Leftrightarrow\left|x-3\right|=3\)
=>x-3=3 hoặc x-3=-3
=>x=6 hoặc x=0
\(\left(x-5\right)^{2018}-\left(x-5\right)^{2016}=0\)
<=> \(\left(x-5\right)^{2016}\left[\left(x-5\right)^2-1\right]=0\)
<=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)<=>\(\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
Vậy x\(\in\){4,5,6}
<=>
\(\left(x-5\right)^{2016}=\left(x-5\right)^{2018}\)
\(\Rightarrow\left(x-5\right)^{2016}\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{2016}=0\\\left(x-5\right)^2=1-0=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)