Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
Nếu như anh Thắng nói :
(x+1)x+2=(x+1)x+6
Từ đó suy ra: x+1=0 hoặc 1
Nếu x+1=0=>x=-1
Nếu x+1=1=>x=0
Vậy x=0;1
Có: \(\left(x-2\right)^2\ge0;\left(y+16\right)^{2016}\ge0\forall x;y\)
Mà theo đề bài: (x - 2)2 + (y - 16)2016 = 0
\(\Rightarrow\begin{cases}\left(x-2\right)^2=0\\\left(y+16\right)^{2016}=0\end{cases}\)\(\Rightarrow\begin{cases}x-2=0\\y+16=0\end{cases}\)\(\Rightarrow\begin{cases}x=2\\y=-16\end{cases}\)
Vậy x = 2; y = -16
\(a\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\\ =>\left(x-\frac{1}{2}\right)=\frac{1}{3}\\ =>x=\frac{1}{3}+\frac{1}{2}\\ =>x=\frac{5}{6}\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\\ =>\left(x+\frac{1}{2}\right)=\frac{2}{5}\\ =>x=\frac{-1}{10}\)
d) (2x+3)2016=(2x+3)2018 khi 2x+3=0 hoặc 1
Nếu 2x+3=0
=2x=-3 ( loại )
Nếu 2x+3=1
=>2x=-2
=>x=-1 ( thỏa )
\(\left(x-1\right)^{2016}=\left(1-x\right)^{2018}\)
\(\Rightarrow\left(x-1\right)^{2016}=-\left(x-1\right)^{2018}\)
\(\Rightarrow\left(x-1\right)^{2016}=\left(x-1\right)^{2018}\)
\(\Rightarrow\left(x-1\right)^{2016}-\left(x-1\right)^{2018}=0\)
\(\Rightarrow\left(x-1\right)^{2016}.\left(1-\left(x-1\right)^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{2016}=0\\1-\left(x-1\right)^2=0\end{cases}}\)
nốt nha
\(\left(x-1\right)^{2016}=\left(1-x\right)^{2018}\)
hai vế có mũ là 2016 và 2018 thì đổi ra bằng 0 vì số rất lớn
\(\Rightarrow x\in\left\{1;2\right\}\)