K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

Trả lời:

\(\left(x-3\right)^6=\left(x-3\right)^7\)

\(\Leftrightarrow\left(x-3\right)^6-\left(x-3\right)^7=0\)

\(\Leftrightarrow\left(x-3\right)^6\left(1-x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)^6\left(4-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^6=0\\4-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=0\\4-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=4\end{cases}}}\)

Vậy x = 3; x = 4

( x -3 )^6 = ( x -3 )^7 

x = 3 , 4 

nha bạn của tôi 

24 tháng 8 2023

Hỏi rồi àm sao hỏi lại vậy

24 tháng 8 2023

\(\left(x-\dfrac{1}{5}\right):\left(x-1\dfrac{6}{7}\right)< 0\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right):\left(x-\dfrac{13}{7}\right)< 0\)

\(TH1:\left\{{}\begin{matrix}x-\dfrac{1}{5}>0\\x-\dfrac{13}{7}< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< \dfrac{13}{7}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{5}< x< \dfrac{13}{7}\)

 

\(TH2:\left\{{}\begin{matrix}x-\dfrac{1}{5}< 0\\x-\dfrac{13}{7}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>\dfrac{13}{7}\end{matrix}\right.\) (vô lý nên loại)

Vậy \(\dfrac{1}{5}< x< \dfrac{13}{7}\) thỏa mãn đề bài

a: =>4x-6-9=5-3x-3

=>4x-15=-3x+2

=>7x=17

hay x=17/7

b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)

=>2/3x+21/3x=4/5+2+1/4=61/20

=>23/3x=61/20

=>3x=23:61/20=460/61

hay x=460/183

`#3107`

`(x - 3)^5 = 4(x - 3)^3`

`=> (x - 3)^5 - 4(x - 3)^3 = 0`

`=> (x - 3)^3 * [ (x - 3)^2 - 4] = 0`

`=>`\(\left[{}\begin{matrix}\left(x-3\right)^3=0\\\left(x-3\right)^2-4=0\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^2=4\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\\left(x-3\right)^2=\left(\pm2\right)^2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\x-3=2\\x-3=-2\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\x=5\\x=1\end{matrix}\right.\)

Vậy, `x \in {1; 3; 5}.`

26 tháng 9 2023

Thanks hen!

22 tháng 4 2021

|x|+|x+2|=3

=>x={3;-3} và x+2=3 hoặc x+2=-3

=>x={3;-3} và x=3-2=1 hoặc x=-3-2=-5

Vậy x={3;-3;1;-5}

CHẮC MÌNH KHÔNG ĐÚNG ĐÂU NÊN MONG BẠN THÔNG CẢM NHAbucminh

22 tháng 4 2021

Vì |x| luôn > hoặc = 0 với mọi x

| x+2l luôn > hoặc = 0 với mọi x

=>|x| + | x+2l luôn > hoặc = 0 với mọi x

=>x + x+2=3

<=> 2x + 2 = 3

<=> 2x = 1

<=> x= 1/2

 

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)

=>4x=18

hay x=9/2

2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)

=>4x=108

hay x=27

3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)

\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)

=>4x=12

hay x=3

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

5 tháng 1 2019

wow, it's so hard, i am caculating it

X= -20,384

5 tháng 1 2019

thank you very much

22 tháng 9 2023

(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0

Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0

x + y = 13 và x - y = 6

x = (13 - 6) : 2 = 3,5

y = 13 - 3,5 = 9,5

Vậy x = 3,5 và y = 9,5

22 tháng 9 2023

(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0

(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)

(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)

 

22 tháng 9 2023

(\(x\) -13 +y)2 + (\(x\) - 6 - y)2 = 0

(\(x-13+y\))2 ≥0; (\(x\) - 6 - y)2 ≥ 0∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x-6-y\))2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ -13 - 6 + 2\(x\) = 0 ⇒ \(x\) = \(\dfrac{19}{2}\) ⇒ y = \(\dfrac{19}{2}\) - 6 ⇒ y = \(\dfrac{7}{2}\)

Vậy (\(x\);y) = (\(\dfrac{19}{2}\)\(\dfrac{7}{2}\))

23 tháng 9 2023

\(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0\left(1\right)\)

Ta có :

\(\left\{{}\begin{matrix}\left(x-13+y\right)^2\ge0,\forall x;y\in R\\\left(x-6-y\right)^2\ge0,\forall x;y\in R\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-13+y\right)^2=0\\\left(x-6-y\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=19\\y=x-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6=\dfrac{7}{2}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\) thoả mãn đề bài