\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right),\left(1+\frac{1}{4}\right)....\left(1+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2014}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2015}{2014}\)

\(=\frac{2015}{2}\)

2 tháng 5 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{2014}\right)\)

\(\frac{3}{2}.\frac{4}{3}...\frac{2015}{2014}\)

\(\frac{3.4...2015}{2.3...2014}\)

\(\frac{2015}{2}\)

13 tháng 6 2020

\(b,\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{100}{2}\)

\(=50\)

17 tháng 3 2018

\(=>D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\cdot\frac{2013}{2014}=\frac{1}{2014}\)

17 tháng 3 2018

(1-1/2)*(1-1/3)*(1-1/4)*...*(1-1/2014)

=1/2*2/3*3/4*...*2013/2014

=1/2014

Ta có:\(\left(x-1\right)\left(x+1\right)=x\left(x-1\right)+x-1^2=x^2-x+x-1=x^2-1\)

Áp dụng:\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

                  \(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot...\cdot\frac{2014^2-1}{2014\cdot2014}\)

                  \(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot...\cdot\frac{2013\cdot2015}{2014^2}\)

                  \(=\frac{1}{2}\cdot\frac{2015}{2014}=\frac{2015}{4028}\)

3 tháng 4 2018

Ta có : 

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)

\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)

\(A=\frac{1}{2016}\)

Vậy \(A=\frac{1}{2016}\)

Chúc bạn học tốt ~ 

8 tháng 6 2018

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)

\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)

\(\Rightarrow A=\frac{1}{2016}\)

14 tháng 4 2019

\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)

\(\Rightarrow T=\frac{1004}{1005}\)

14 tháng 4 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)

\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(A=\frac{1}{2}.\frac{2010}{2011}\)

\(\Rightarrow A=\frac{1005}{2011}\)

31 tháng 3 2015

\(M=1+1,5+2+2,5+...+1007,5\)

\(M=\frac{1007,5+1}{2}.2014=1015559,5\)

8 tháng 5 2017

NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)

NÊN tích dãy số đó là 0

tk nha

17 tháng 4 2018

100 ngày

AH
Akai Haruma
Giáo viên
22 tháng 10 2024

Lời giải:

$M=1+\frac{1}{2}.\frac{2(2+1)}{2}+\frac{1}{3}.\frac{3(3+1)}{2}+\frac{1}{4}.\frac{4(4+1)}{2}+....+\frac{1}{2014}.\frac{2014(2014+1)}{2}$
$=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2015}{2}$

$=\frac{2+3+4+....+2015}{2}$

$=\frac{1+2+3+....+2015}{2}-\frac{1}{2}$
$=\frac{2015(2015+1)}{4}-\frac{1}{2}=\frac{2031119}{2}$