Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+..+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)
\(C=1+\frac{1}{2}.\left(1+2\right).2:2+\frac{1}{3}.\left(1+3\right).3:2+\frac{1}{4}.\left(1+4\right).4:2+...+\frac{1}{2016}.\left(1+2016\right).2016:2\)
\(C=1+3:2+4:2+5:2+...+2017:2\)
\(C=2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}+5.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(C=\frac{1}{2}.\left(2+3+4+5+...+2017\right)\)
\(C=\frac{1}{2}.\left(2+2017\right).2016:2\)
\(C=\frac{1}{2}.2019.2016.\frac{1}{2}\)
\(C=2019.504=1017576\)
Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)
\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)
\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)
\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)
\(A=\frac{1.2018}{2017.2}\)
\(A=\frac{1009}{2017}\)
Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)
\(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)
Vậy A>B
=\(\left(\frac{-1}{2}\right)\left(\frac{-2}{3}\right).....\left(\frac{-2014}{2015}\right)\left(\frac{-2015}{2016}\right)\)
=\(\frac{-1.-2.-3......-2014.-2015}{2.3.4......2015.2016}\)
=\(\frac{1}{2016}\)
Chúc bạn học tốt !
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2015}-1\right)\left(\frac{1}{2016}-1\right)\)
=\(\frac{-1}{2}.\frac{-2}{3}......\frac{-2014}{2015}.\frac{-2015}{2016}\)
=\(\frac{1}{2016}\)(ta rút gọn tích)
k cho mình nha!
\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{2016}-1\right)\left(\frac{1}{2017}-1\right)\)
\(=\frac{-1}{2}.\frac{-2}{3}...\frac{-2015}{2016}.\frac{-2016}{2017}\)
\(=\frac{1.2...2015.2016}{2.3...2016.2017}\) ( tử số có chẵn số hạng )
\(=\frac{1}{2017}\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)
(1-1/2)(1-1/3)(1-1/4)...(1-1/2016)
=1/2*2/3*3/4...2015/2016
=1/2016
Cảm ơn bạn nha:))