\(\frac{10^{2016}+2^3}{9}\) là số tự nhiên

So sánh A=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)

30 tháng 8 2016

\(10^{2016}\)= 1000...00(mình ko cần biết cso bao nhiêu cx 0, nó là bài đánh  lừa nhá bn)

\(2^3\)= 8

\(10^{2016}\) + 8= 10000...08

có 1+0+0+...+0+8=9. vậy số này chia hết cho 9

mà như bạn thấy số này là số dương nên số đó là số tự nhiên nhá

26 tháng 10 2019

A = \(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(=\frac{3}{5}+\frac{2}{5}=1\)

26 tháng 10 2019

b) B = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6.8^4.3^5}-\frac{5^{10}.7^3:25^5.49}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.7^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}-7^2}{5^9.7^3+5^9.7^3.2^3}\)

\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^2.\left(7-1\right)}{5^9.7^3\left(1+2^3\right)}\)

 \(=\frac{1}{3.2}-\frac{5.2}{7.3}\)

\(=\frac{7}{3.2.7}-\frac{5.2.2}{7.3.2}\)

\(=\frac{7}{42}-\frac{20}{42}\)

\(=-\frac{13}{42}\)

22 tháng 12 2016

sao phần b k có qui luật j vậy đúng ra nó phải là 3/2014+2/2015+2/2016 chứ ( 3 phân số cuối)

30 tháng 7 2019

\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}=\left(\frac{2015+2}{2}\right)+\left(\frac{2014+3}{3}\right)+.....\left(\frac{1+2016}{2016}\right)+\frac{2017}{2017}=\frac{2017}{2}+\frac{2017}{3}+....+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2017}\right)\Rightarrow\frac{B}{A}=2017\)

18 tháng 12 2018

\(\text{đặt}k=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)

\(K=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+....+\frac{1}{2017}\Rightarrow A=1\)

27 tháng 7 2017

\(b.\)ghi lại đề nha bn

\(=\frac{2.2306}{1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{230.231}{2}}}\)

\(=\frac{2.2306}{1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{230.231}}\)

\(=\frac{2.2306}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{230.231}\right)}\)

\(=\frac{2.2306}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{230}-\frac{1}{231}\right)}\)

\(=\frac{2.2306}{1+2.\left(\frac{1}{2}-\frac{1}{231}\right)}\)

\(=\frac{2.2306}{1+1-\frac{2}{231}}\)

\(=\frac{2.2306}{2-\frac{2}{231}}\)

\(=\frac{2.2306}{2\left(1-\frac{1}{231}\right)}\)

\(=\frac{2306}{1-\frac{1}{231}}\)

mình nha bn thanks nhìu <3

27 tháng 7 2017

a) \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+...+\frac{1}{2016}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2017}{2}+...+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017.\left(\frac{1}{2}+...+\frac{1}{2016}+\frac{1}{2017}\right)}\)

\(=\frac{1}{2017}\)

17 tháng 7 2016

\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2016}-1\right)\times\left(\frac{1}{2017}-1\right)\)

\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times\left(-\frac{3}{4}\right)\times...\times\left(-\frac{2015}{2016}\right)\times\left(-\frac{2016}{2017}\right)\)

\(=\frac{1}{2017}\)

17 tháng 7 2016

1/2017

Câu này dễ lắm, bn chỉ cần tính ra rùi chia mẫu cho tử, cái nào zống nhau thì bỏ nha