
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Chỗ khoanh bút bi thì là biến đổi tương đương từ biểu thức trước nó thôi bạn.
Còn chỗ khoanh mờ, là công thức nghiệm của hàm \(\cos x =0\)

Olm chào em, để vào lớp cô Hoài em thực hiện theo hướng dẫn sau:
Bước 1 nhập mã lớp: olm-1.102018260
Bước 2: nhấn tìm kiếm
Bước 3: chọn tham gia
Bước 4 chat với cô qua Olm ghi tên mà em muốn đổi sang.
Bước 5: chờ cô duyệt và đổi tên hiển thị.

\(sin9x-\sqrt{3}cos9x=sin7x-\sqrt{3}cos7x\)
\(\Leftrightarrow\frac{1}{2}sin9x-\frac{\sqrt{3}}{2}cos9x=\frac{1}{2}sin7x-\frac{\sqrt{3}}{2}cos7x\)
\(\Leftrightarrow sin\left(9x-\frac{\pi}{3}\right)=sin\left(7x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}9x-\frac{\pi}{3}=7x-\frac{\pi}{3}+k2\pi\\9x-\frac{\pi}{3}=\frac{4\pi}{3}-7x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{48}+\frac{k\pi}{8}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm âm lớn nhất \(x=-\frac{\pi}{48}\)

cos\(\alpha\)=\(\dfrac{+}{-}\)\(\sqrt{1-sin\alpha^2}\)=\(\dfrac{+}{-}\dfrac{\sqrt{3}}{2}\)

(la) A E D B C G F c b
Đặt \(\overrightarrow{AB}=\overrightarrow{b,}\overrightarrow{AC}=\overrightarrow{c,}t=\frac{BF}{FC}\)
Khi đó, \(\overrightarrow{AE}=p,\overrightarrow{AD}=q\overrightarrow{c},p,q\in\left(0;1\right)\) và
\(\overrightarrow{AF}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t};\overrightarrow{AG}=\frac{t\overrightarrow{AD}+\overrightarrow{AE}}{1+t}=\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)
Mặt khác, do BE = tCD suy a \(\left(1-p\right)\left|b\right|=t\left(1-q\right)\left|\overrightarrow{c}\right|\)
Từ đó, với chú ý đường phân giác \(l_a\) có vec tơ chỉ phương là \(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\)
Suy ra :
\(\overrightarrow{GF}=\overrightarrow{AF}-\overrightarrow{AG}=\frac{t\overrightarrow{c}+\overrightarrow{b}}{1+t}-\frac{tq\overrightarrow{c}+p\overrightarrow{b}}{1+t}\)
\(=\frac{t\left(1-q\right)}{1+t}.\overrightarrow{c}+\frac{1-p}{1+t}.\overrightarrow{b}\)
\(=\frac{\left(1-q\right)\left|b\right|}{1+t\overrightarrow{ }}\left(\frac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}+\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|}\right)=\frac{\left(1-q\right)\left|\overrightarrow{b}\right|}{1+t}.\overrightarrow{AL}\)
=> Điều phải chứng minh
Từ giả thiết suy ra với mọi điểm O đều có :
\(\overrightarrow{OP}=\frac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OC}\right)\), \(\overrightarrow{ON}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OI}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OE}\right)\)
\(\overrightarrow{OM}=\frac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)\), \(\overrightarrow{OQ}=\frac{1}{2}\left(\overrightarrow{OD}+\overrightarrow{OE}\right)\Rightarrow\overrightarrow{OJ}=\frac{1}{4}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OD}+\overrightarrow{OE}\right)\)
Từ đó suy ra \(\overrightarrow{JI}=\frac{1}{4}\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\Rightarrow\) IJ // CD => Điều phải chứng minh
bn phải đứng trong top bxp GP hoặc làm bài của Đấu trường tri thức vừa mới ra ik bn
muốn kiếm GP thì cứ trả lời vào các câu hỏi giáo viên giao nếu đúng sẽ đc GP còn COIN thì rút tiền ngân hàng