K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

Giải bài 87 trang 100 SGK Toán 9 Tập 2 | Giải toán lớp 9

Gọi nửa đường tròn tâm O đường kính BC cắt hai cạnh AB và AC lần lượt tại M và N.

Giải bài 87 trang 100 SGK Toán 9 Tập 2 | Giải toán lớp 9

13 tháng 4 2017

Lấy cạnh BC của một tam giác đều làm đường kính, vẽ một nửa đường tròn về cùng một phía với tam giác ấy đối với đường thẳng BC. Cho biết cạnh BC = a, hãy diện tích hình viên phân được tạo thành.

Hướng dẫn giải:

Gọi nửa đường tròn tâm O đường kính BC căt hai cạnh AB và AC lần lượt tại M và N.

∆ONC có OC = ON, = 60o nên ∆ONC là tam giác đều, do đó = 60o.

Squạt NOC = = .

S∆NOC = =

Diện tích hình viên phân:

SCpN = - =

Vậy diện tích hình viên phhân bên ngoài tam giác là:

17 tháng 4 2020

em xin chịu em mới lớp mẫu giáo

26 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Dây AB bằng cạnh hình vuông nội tiếp đường tròn (O) nên ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 và cung nhỏ AB có số đo bằng 360 ° : 4 = 90 °

Dây BC bằng cạnh hình tam giác đều nội tiếp đường tròn (O) nên ta có:

BC = R 3 và cung nhỏ BC có số đo bằng  360 ° : 3 = 120 °

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác vuông ABH ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác vuông ACH ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

22 tháng 3 2021

a/ Ta có

\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)

=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB

b/ Ta có

\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)

\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)

\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)

Mà \(AH\perp BC\Rightarrow DF\perp BC\)

c/

Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.

Nối I với H, D với H 

Xét \(\Delta HDF\) và \(\Delta HEI\) ta có

\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)

\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)

Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)

\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)

\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\)  => tg HDF đồng dạng với tg HEI

\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)