\(2\times|1-x|-x+1=-3x\)

\(\Left...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

??????????????????

Thick thể hiện à

haizzzz

12 tháng 7 2017

Trần My có ngừ nhờ lm jum bạn ơi; chứ mk đăng lên đ ây thì đk cmj

24 tháng 7 2018

a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)

=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)

=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)

=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)

=> \(x=\dfrac{-1}{11}\)

24 tháng 7 2018

Đây toán 8 mà? :v

a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)

\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)

\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)

\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)

\(\Leftrightarrow\left(11+1\right)x=0\)

\(\Leftrightarrow11x+1=0;x=0\)

\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)

Vậy....

a) \(\left(x-1\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\2x-4=0\Rightarrow x=2\end{matrix}\right.\)

b) \(\left(x^2+5\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x-5=0\Rightarrow x=5\end{matrix}\right.\)

\(x\in Z\Rightarrow x=5\)

c) \(\left(x^2+5\right)\left(x^2-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x^2-2=0\Rightarrow x=\sqrt{2}\end{matrix}\right.\)

\(x\in Z\Rightarrow x\in\varnothing\)

1: =>3x+2=x+1 hoặc 3x+2=-x-1

=>2x=-1 hoặc 4x=-3

=>x=-1/2 hoặc x=-3/4

2: =>|x+2|(|x|-1|)=0

=>x=-2; x=1; x=-1

3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x+3+x+1\right)\left(2x+3-x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(3x+4\right)\left(x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

10 tháng 9 2018

\(A=\left(13+x\right)\left(17+x\right)\left(2-x\right)\le0\)

Nếu  \(x< -17\), ta có 13 + x < 0, 17 + x \(\le\) 0, 2 - x > 0 

Vậy nên A \(>\) 0,

Nếu  \(-17\le x\le-13\),  ta có: 13 + x < 0 , 17 + x > 0, 12 - x > 0. Vậy thì \(A\le0\)

Nếu  \(-13< x< 2\), ta có: 13 + x > 0, 17 + x > 0, 2 - x > 0. Vậy nên \(A>0\)

Nếu \(x\ge2\) , ta có \(13+x>0,17+x>0,2-x\ge0\). Vậy nên \(A\le0\)

Vậy để \(A\le0\) thì \(-17\le x\le-13\) hoặc \(x\ge2.\)

Cách dùng dấu "và" : \(\hept{\begin{cases}\\\end{cases}}\)và dấu "hoặc":\(\orbr{\begin{cases}\\\end{cases}}\)*Dấu "và": \(\hept{\begin{cases}\\\end{cases}}\)Định nghĩa : \(\left|x\right|=\hept{\begin{cases}-x\left(x< 0\right)\\x\left(x\ge0\right)\end{cases}}\)Đó chỉ là định nghĩa thôi nhưng áp dụng thì lại khác :Ví dụ : \(\left|x\right|=5\)thì \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)chứ không thể...
Đọc tiếp

Cách dùng dấu "và" : \(\hept{\begin{cases}\\\end{cases}}\)và dấu "hoặc":\(\orbr{\begin{cases}\\\end{cases}}\)

*Dấu "và": \(\hept{\begin{cases}\\\end{cases}}\)

Định nghĩa : \(\left|x\right|=\hept{\begin{cases}-x\left(x< 0\right)\\x\left(x\ge0\right)\end{cases}}\)

Đó chỉ là định nghĩa thôi nhưng áp dụng thì lại khác :

Ví dụ : \(\left|x\right|=5\)thì \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)chứ không thể là \(\hept{\begin{cases}x=5\\x=-5\end{cases}}\)

Lí do : Vì x không thể nhận đồng thời 2 giá trị 5 và -5

Nói tóm lại là : Dấu "và" là để biểu thị còn dấu "hoặc" là để chia trường hợp

Ví dụ khác :

Giải phương trình : \(\left|2x+1\right|=5\)

Ta có : \(\left|2x+1\right|=5\)

   \(\Leftrightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy x = 2 HOẶC x = -3 

Trong trường hợp này không thể dùng dấu "và" vì nếu dùng dấu "và" thì x nhận đồng thời cả 2 giá trị 2 và -3. Điều đó là vô lí !

Nếu muốn các bạn có thể hỏi trực tiếp giáo viên! 

P/: mình từng thấy một vụ cãi vã về việc dùng dấu "và" và dấu "hoặc" nên mình làm bài này để giúp mọi người hiểu rõ hơn !

26
13 tháng 12 2018

và uyên đz đã đúng :3

13 tháng 12 2018

Theo mình,nó đã là định nghĩa của sgk,của nhiều nước trên thế giới thì chúng ta có thể viết 

Nếu |x| = 5 thì \(\hept{\begin{cases}x=5\\x=-5\end{cases}}\) (ở đây nó vẫn biểu thị cho trường hợp nhé) nhưng không được viết \(x=\hept{\begin{cases}5\\-5\end{cases}}\) vì x không đồng thời thỏa mãn cả hai trường hợp. Mình từng tham gia vụ cãi về việc dùng dấu nên xin nêu ý kiến.Còn lại tùy bạn,tùy người chấm thi.Như có trường mình thì dùng dấu nào chả được? Vả lại khuyến khích dùng dấu của định nghĩa là đàng khác!

15 tháng 3 2018

Mấy câu này dễ mà,động não lên chứ bạn:v

Link______________Link

h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

\(\ge\left|x-1+3-x\right|=2\)

\(\Rightarrow x+1>2\Leftrightarrow x>1\)

Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)

Câu b xét khoảng tương tự với cái link t đưa thôi

hơi bức xúc rồi đó

tau chỉ muốn kiểm tra lại thôi