K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Ta có: \(\frac{{2{\rm{x}}}}{{x + 1}}.\frac{{x - 1}}{x} = \frac{{2{\rm{x}}\left( {x - 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{{2\left( {x - 1} \right)}}{{x + 1}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Ta có: \(\frac{1}{{2{{\rm{x}}^2} + 2{\rm{x}}}} = \frac{1}{{2{\rm{x}}\left( {x + 1} \right)}}\)

\(\frac{1}{{3{{\rm{x}}^2} - 6{\rm{x}}}} = \frac{1}{{3{\rm{x}}\left( {x - 2} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\\P = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}:\frac{{x + 1}}{{2{\rm{x}} + 1}}\\P = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}.\frac{{2{\rm{x}} + 1}}{{x + 1}}\\P = \frac{{x\left( {x + 1} \right).\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)\left( {x + 1} \right)}}\\P = \frac{x}{{2{\rm{x}} - 1}}\end{array}\)

\(\begin{array}{l}b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\\Q = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}.\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}}\\Q = \frac{{\left( {x + 1} \right)\left( {x + 2} \right).{x^2}}}{{x\left( {x - 2} \right).{{\left( {x + 2} \right)}^2}}}\\Q = \frac{{x\left( {x + 1} \right)}}{{{x^2} - 4}}\end{array}\)

4 tháng 11 2016

a)\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x+2\right)^2P}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2P}{x^2-4}=\frac{\left(x-1\right)Q}{x^2-4}\Rightarrow\left(x+2\right)^2P=\left(x-1\right)Q\)

\(\Rightarrow\frac{P}{Q}=\frac{x-1}{\left(x+2\right)^2}\)

b) Từ gt,ta có :\(\left(x+2\right)\left(x^2-2x+1\right)P=\left(x^2-1\right)\left(x-2\right)Q\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)^2P=\left(x-1\right)\left(x+1\right)\left(x-2\right)Q\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)P=\left(x+1\right)\left(x-2\right)Q\)

\(\Rightarrow\frac{P}{Q}=\frac{\left(x+1\right)\left(x-2\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x^2-x-2}{x^2+x-2}\)

Ở đây có nhiều cặp đa thức (P ; Q) thỏa mãn lắm ! Mình xét P/Q để chỉ rằng chúng tỉ lệ với 2 đa thức ở vế phải

Ví dụ : Câu a : P = 2 - 2x thì Q = -2x2 - 8x - 8

4 tháng 11 2016

quy đồng 2 phân thức ở 2 bên dấu "="     =>   tử bằng nhau (có dạng A*P = B*Q)   => A=Q; B=P  (trường hợp A hoặc B hoặc cả A và B là tích của 2 đa thức thì triển khai tích đó thành đa thức) 

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

Cặp phân thức có cùng mẫu thức: \(\frac{{5{\rm{x}} + 10}}{{4{\rm{x}} - 8}}\) và \(\frac{{4 - 2{\rm{x}}}}{{4\left( {x - 2} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Cặp phân thức nào có mẫu giống nhau là: \(\frac{{x - 1}}{{3{\rm{x}} + 6}}\) và \(\frac{{x + 1}}{{3\left( {x + 2} \right)}}\)

Vì : \(\frac{{x - 1}}{{3{\rm{x}} + 6}} = \frac{{x - 1}}{{3\left( {x + 2} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có:

\(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}} = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{\left( {3{\rm{x}} - 1} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 1} \right)}} = \frac{1}{{3{\rm{x}} - 1}}\)

\(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}} = \frac{{x\left( {x - 4} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x\left( {4 - x} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x}}{{4 + x}}\)

b) Mẫu thức chung của hai phân thức nhân được ở câu a là: \(\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)\)

Nhân tử phụ của \(\frac{1}{{3{\rm{x}} - 1}}\) là: \(4 + x\)

Nhân tử phụ của \(\frac{{ - x}}{{4 + x}}\) là : \(3{\rm{x}} - 1\)

Khi đó:

\(\frac{1}{{3{\rm{x}} - 1}} = \frac{{4 + x}}{{\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)}}\)

\(\frac{{ - x}}{{4 + x}} = \frac{{ - x\left( {3{\rm{x}} - 1} \right)}}{{\left( {4 + x} \right)\left( {3{\rm{x}} - 1} \right)}}\)

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

Ta có: \(\frac{{{\rm{ - a}}{{\rm{x}}^2}{\rm{ -  ax}}}}{{{x^2} - 1}} = \frac{{ - a\left( {{x^2} + x} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{ - ax\left( {x + 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{{\rm{ - ax}}}}{{x - 1}}\)

Để hai phân thức sau bằng nhau: \(\frac{{{\rm{ - a}}{{\rm{x}}^2}{\rm{ -  ax}}}}{{{x^2} - 1}}\) và \(\frac{{3{\rm{x}}}}{{x - 1}}\) khi và chỉ khi a = -3

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

\(\begin{array}{l}\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}\\ \Rightarrow Q = \frac{{\left( {8{{\rm{x}}^3} + 4{\rm{x}}} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = \frac{{4{\rm{x}}\left( {2{{\rm{x}}^2} + 1} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}\\Q = 4{\rm{x}}\left( {4{\rm{x}} - 1} \right) = 16{{\rm{x}}^2} - 4{\rm{x}}\end{array}\)

Đáp án D

HQ
Hà Quang Minh
Giáo viên
9 tháng 9 2023

a) Ta có: \(\frac{5}{{2 - x}} = \frac{{ - 5}}{{x - 2}}\)

\({x^2} - 4{\rm{x}} + 4 = {\left( {x - 2} \right)^2}\)

\(MTC = \left( {x + 2} \right){\left( {x - 2} \right)^2}\)

Nhân tử phụ của x+2 là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của\({x^2} - 4{\rm{x}} + 4\)  là \({\left( {x - 2} \right)^2}\)

Nhân tử phụ của x - 2 là (x+2)(x−2)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có:

\(\begin{array}{l}\frac{1}{{x + 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{{x + 1}}{{{x^2} - 4{\rm{x  -  4}}}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\\\frac{5}{{2 - x}} = \frac{{ - 5\left( {x + 2} \right)\left( {x - 2} \right)}}{{\left( {x + 2} \right){{\left( {x - 2} \right)}^2}}}\end{array}\)

b) Ta có: 3x+3y=3(x+y)

            \({x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)\)

            \({x^2} + 2{\rm{x}}y + {y^2} = {\left( {x - y} \right)^2}\)

\(MTC = 3\left( {x + y} \right){\left( {x - y} \right)^2}\)

Nhân tử phụ của 3x+3y là: \({\left( {x - y} \right)^2}\)

Nhân tử phụ của \({x^2} - {y^2}\) là: 3(x−y)

Nhân tử phụ của \({x^2} + 2{\rm{x}}y + {y^2}\) là: 3(x+y)

Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng, ta có: 

\(\begin{array}{l}\frac{1}{{3{\rm{x}} + 3y}} = \frac{{{{\left( {x - y} \right)}^2}}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}} = \frac{{6{\rm{x}}\left( {x - y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\\\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}} = \frac{{3\left( {{x^2} - xy + {y^2}} \right)\left( {x + y} \right)}}{{3\left( {x + y} \right){{\left( {x - y} \right)}^2}}}\end{array}\)