Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2x-1|> hoặc bằng 0
|2x-1-5> hoặc bằng -5
dấu bằng xảy ra khi x=3
Vậy Min B là -5 khi x=3
Áp dụng định lí Pytago, Ta có:
x2=122+52=144+25=169
=> 132=x2 => x=13.
Hình b) ta có:
x2= 12 + 22 = 1+4=5
x= √5
Hình c)
Theo định lí pytago:
292=212+x2
nên x2=292-212
= 841-441=400=202
=>x=20
Hình d)
x2=( √7)2+32=7+9=16=42
x=4.
Ta có: 2a = 3b = 4c
\(\Rightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\) \(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{6+4+3}=\frac{26}{13}=2\)
\(\Rightarrow a=6.2=12;b=2.4=8;c=2.3=6\)
( 4,82 - 14,4 : 1,2 + 3,1 ) . 0,5 - [ 2,9 . 4,2 - 4,5 : ( -0,5 ) + 13,22 ]
= ( 4,82 - 12 + 3,1 ) . 0,5 - [ 12,18 - ( -9 ) + 13,22 ]
= ( -7,18 + 3,1 ) . 0,5 - [ 21,18 + 13,22 ]
= ( -4,08) . 0,5 - 34,4
= ( -2,04 ) - 34,4
= ( -36,44 )
Hk tốt
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
Suy ra: \(\widehat{BAE}=\widehat{BDE}=90^0\)
b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)
Do đó: ΔAEF=ΔDEC
c: Xét ΔEFC có EF=EC
nên ΔEFC cân tại E
d: Ta có: ΔAEF=ΔDEC
nên AF=DC
Ta có: BA+AF=BF
BD+DC=BC
mà BA=BD
và AF=DC
nên BF=BC
hay B nằm trên đường trung trực của CF(1)
Ta có: EF=EC
nên E nằm trên đường trung trực của CF(2)
Ta có: NF=NC
nên N nằm trên đường trung trực của CF(3)
Từ (1), (2) và (3) suy ra B,E,N thẳng hàng