các bạ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔDBE có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

Suy ra: \(\widehat{BAE}=\widehat{BDE}=90^0\)

b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có 

EA=ED

\(\widehat{AEF}=\widehat{DEC}\)

Do đó: ΔAEF=ΔDEC

c: Xét ΔEFC có EF=EC

nên ΔEFC cân tại E

d: Ta có: ΔAEF=ΔDEC

nên AF=DC

Ta có: BA+AF=BF

BD+DC=BC

mà BA=BD

và AF=DC

nên BF=BC

hay B nằm trên đường trung trực của CF(1)

Ta có: EF=EC
nên E nằm trên đường trung trực của CF(2)

Ta có: NF=NC

nên N nằm trên đường trung trực của CF(3)

Từ (1), (2) và (3) suy ra B,E,N thẳng hàng

22 tháng 10 2021

ID // KP // MN

=> IKP và DIK là 2 góc trong cùng phía bù nhau

=> PKM và KMN là 2 góc trong cùng phía bù nhau

=> PKM + KMN = 180o

=> PKM + 150o = 180o

=> PKM = 30o

=> IKP + DIK = 180o

=> IKP + 130o = 180o

=> IKP = 50o

IKP + PKM = IKM

=> 50o + 30o = IKM

=> IKM = 80o

22 tháng 10 2021

ti ck cho mình nha

Trả lời :

Các góc mình nhìn ko rõ, mờ lắm bạn

# Bạn chụp rõ vào ạ

11 tháng 9 2017

a)\(x+56^o=90^o\Rightarrow x=90^o-56^o=34^o\)

b)Không dùng thước đo nhưng ta biết tổng các góc trong tam giác bằng \(180^o\) , vì ...

Cái sau mk ko nhìn rõ

11 tháng 9 2017

vậy mìn chụp lại r bạn làm tiếp nha

17 tháng 10 2021

bây h mik giúp có đc hơm :)?

18 tháng 10 2021

đc bn cs làm đi ròi mik k cho

18 tháng 9 2021

Nếu khó nhìn thì bảo mik nhé !!

18 tháng 9 2021

khó chịu thôi

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )