Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B E D F C A 50 40 140 H
Kéo dài AB, AB và FC cắt nhau tại H
Vì AB vuông với AC nên BAC = 90 độ
Ta có: BAC + CAH = 180 độ( kề bù)
=> 90 + CAH = 180
=> CAH = 180 - 90
=> CAH = 90
Áp dụng tính chất tổng 3 góc của 1 tam giác ta có:
HAC + ACH + AHC = 180
=> 90 + 40 + AHC = 180
=> 130 + AHC = 180
=> AHC = 180 - 130
= 50
Suy ra góc AHC = EAB = 50 độ
mà 2 góc này ở vị trí so le trong
=> EB // FC → ĐPCM
\(1.\) \(P=15\frac{1}{4}:\left(-\frac{5}{7}\right)-25\frac{1}{4}:\left(-\frac{5}{7}\right)\)
\(=\left(15\frac{1}{4}-25\frac{1}{4}\right)\cdot\left(-\frac{7}{5}\right)\)
\(=\left(-10\right)\cdot\left(-\frac{7}{5}\right)\)
\(=14\)
vậy P=14
\(2.\) \(\left(\frac{21}{10}-|x+2|\right):\left(\frac{19}{10}-\frac{7}{5}\right)+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right):\frac{1}{2}+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{10}-|x+2|\right)\cdot2+\frac{4}{5}=1\)
\(\Rightarrow\left(\frac{21}{5}-|x+2|\right)+\frac{4}{5}=1\)
\(\Rightarrow\frac{21}{5}-|x+2|=\frac{1}{5}\)
\(\Rightarrow|x+2|=4\)
\(\Rightarrow\orbr{\begin{cases}x+2=4\\x+2=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
vậy \(x\in\left\{2;-6\right\}\)
bài 1
ta có \(P=\left(15\frac{1}{4}-25\frac{1}{4}\right):\left(-\frac{5}{7}\right)=-10:\left(-\frac{5}{7}\right)=-10\times-\frac{7}{5}=14\)
2.\(\left(\frac{21}{10}-\left|x+2\right|\right):\left(\frac{19}{10}-\frac{14}{10}\right)+\frac{4}{5}=1\)
\(\Leftrightarrow\left(\frac{21}{10}-\left|x+2\right|\right):\frac{5}{10}=\frac{1}{5}\Leftrightarrow\frac{21}{10}-\left|x+2\right|=\frac{2}{5}\)
\(\Leftrightarrow\left|x+2\right|=\frac{21}{10}-\frac{2}{5}=\frac{17}{10}\Leftrightarrow\orbr{\begin{cases}x+2=\frac{17}{10}\\x+2=-\frac{17}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{10}\\x=-\frac{37}{10}\end{cases}}}\)
1, xét tam giác BDA và tam giác BEC có : ^ABC chung
^BEC = ^BDA = 90
=> tam giác BDA đồng dạng với tam giác BEC (g-g)
=> ^BAD = ^BCE
2, xét tam giác HEA và tam giác BDA có : ^BAD chung
^HEA = ^BDA = 90
=> tam giác HEA đồng dạng với tg BDA (g-g)
=> ^AHE = ^ABD
3, có : ^AHE = ^ACB mà AHE = 60 => ^ABC = 60
có ^BAC + ^BAD = 90 => ^BAD = 30
mà ^BAD + ^DAC = 30 + 45 = 75 = ^BAC
XONG tính ra ^C
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
ID // KP // MN
=> IKP và DIK là 2 góc trong cùng phía bù nhau
=> PKM và KMN là 2 góc trong cùng phía bù nhau
=> PKM + KMN = 180o
=> PKM + 150o = 180o
=> PKM = 30o
=> IKP + DIK = 180o
=> IKP + 130o = 180o
=> IKP = 50o
IKP + PKM = IKM
=> 50o + 30o = IKM
=> IKM = 80o
ti ck cho mình nha