Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
Câu 1 : \(a,\hept{\begin{cases}4x+7y=16\left(1\right)\\4x-3y=-24\left(2\right)\end{cases}}\)
Lấy ( 1 ) trừ ( 2 ) ta được :
10y = 40
=> y = 4
Thay y = 4 vào ( 1 ) ta được :
4x + 7 x 4 = 16
=> 4x + 28 = 16
=> 4x = 16 - 28
=> 4x = - 12
=> x = - 3
Vậy x = - 3 ; y = 4
\(b,\hept{\begin{cases}3x+5y=1\\2x+y=-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+5.\left(-4-2x\right)=1\\y=-4-2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-20-10x=1\\y=-4-2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-7x-20=1\\y=-4-2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-7x=21\\y=-4-2x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4-2.\left(-3\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Loại bỏ dấu căn bằng cách lũy thừa mỗi vế lên = cơ số của dấu căn.
\(x=\frac{1+i\sqrt{5}}{3};\frac{1-i\sqrt{5}}{3}\)
đk: \(\forall x\inℝ\)
Ta có: \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=\sqrt{\left(2x-1\right)^2}\)
\(\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x-1\\x-1=1-2x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)
Lời giải:
ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow (3x^2-10x-25)=2(x+3)(\sqrt{2x-1}-3)$
$\Leftrightarrow (x-5)(3x+5)=2(x+3).\frac{2(x-5)}{\sqrt{2x-1}+3}$
\(\Leftrightarrow (x-5)\left[(3x+5)-\frac{4(x+3)}{\sqrt{2x-1}+3}\right]=0\)
Xét biểu thức trong ngoặc vuông:
\(\Leftrightarrow (3x+5)(\sqrt{2x-1}+3)=4(x+3)\)
\(\Leftrightarrow (3x+5)\sqrt{2x-1}=-(3+5x)\)
Dễ thấy điều này vô lý vì với $x\geq \frac{1}{2}$ thì vế trái không âm còn vế phải âm.
Vậy $x-5=0\Leftrightarrow x=5$
Đk \(2x^4+x^3-4x^2+1\ge0\)
Phương trình \(\Leftrightarrow\hept{\begin{cases}6x^2-4\ge0\\\left(6x^2-4\right)^2=25\left(2x^4+x^3-4x^2+1\right)\end{cases}}\)
\(\Leftrightarrow36x^4-48x^2+16=50x^4+25x^3-100x^2+25\)với đk \(\orbr{\begin{cases}x\ge\sqrt{\frac{4}{6}}\\x\le-\sqrt{\frac{4}{6}}\end{cases}}\)
\(\Leftrightarrow-14x^4-25x^3+52x^2-9=0\)
\(\Leftrightarrow-\left(14x^4+42x^3\right)+\left(17x^3+51x^2\right)+\left(x^2+3x\right)-\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-14x^3+17x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)\left(-7x^2+5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\left(tm\right);x=\frac{1}{2}\left(l\right)\\-7x^2+5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5-\sqrt{109}}{14}\left(l\right);x=\frac{5+\sqrt{109}}{14}\left(tm\right)\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=\frac{5+\sqrt{109}}{14}\end{cases}}}\)
Vậy \(x=-3\)hoặc \(x=\frac{5+\sqrt{109}}{14}\)
\(6x^2-4=5\sqrt{2x^4+x^3-4x^2+1}\)
\(pt\Leftrightarrow6x^2-54=5\sqrt{2x^4+x^3-4x^2+1}-50\)
\(\Leftrightarrow6\left(x^2-9\right)=5\cdot\frac{2x^4+x^3-4x^2+1-100}{\sqrt{2x^4+x^3-4x^2+1}+10}\)
\(\Leftrightarrow6\left(x-3\right)\left(x+3\right)=5\cdot\frac{2x^4+x^3-4x^2-99}{\sqrt{2x^4+x^3-4x^2+1}+10}\)
\(\Leftrightarrow6\left(x-3\right)\left(x+3\right)-5\cdot\frac{\left(x+3\right)\left(2x^3-5x^2+11x-33\right)}{\sqrt{2x^4+x^3-4x^2+1}+10}=0\)
\(\Leftrightarrow\left(x+3\right)\left(6\left(x-3\right)-\frac{5\left(2x^3-5x^2+11x-33\right)}{\sqrt{2x^4+x^3-4x^2+1}+10}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\\frac{\sqrt{109}+5}{14}\end{cases}}\)
Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)