K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 :Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộcdây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm M.1) Chứng minh tức giác CDEM nội tiếp được đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứgiác CDEM.2) Chứng minh AD.ED = BD.CD3) Chứng minh IC là tiếp tuyến của đường tròn (O)Câu 2 : Cho phương...
Đọc tiếp

Câu 1 :Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộcdây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm M.

1) Chứng minh tức giác CDEM nội tiếp được đường tròn. Xác định tâm I của đường tròn ngoại tiếp tứgiác CDEM.

2) Chứng minh AD.ED = BD.CD3) Chứng minh IC là tiếp tuyến của đường tròn (O)

Câu 2 : Cho phương trình (ẩn x) : 2x2 - 2mx -m - 5 = 0   (1)

1) Chứng minh rằng với mọi giá trị của m , phương trình (1) luôn có hai nghiệm phân biệt 

2) Gọi x, x2 là hai nghiệm của phương trình (1)

    a) Tính x1 + x2 và x. x2 theo m 

    b) Tìm giá trị của m thỏa mãn hệ thức x1 . (x1 - 2x2) + x2 . (x2 - 2x1) = 15

Câu 3 : 

1) Vẽ đồ thị (P) của hàm số y = x2 trên hệ trục tọa độ Oxy.

2) Bằng phép tính, hãy tìm giá trị của m để đường thẳng (d): y = 2x – 3m cắt parabol (P) tại hai điểm phân biệt 

2
10 tháng 4 2017

Mình xin làm câu Vi-et thôi.

2/ \(2x^2-2mx-m-5=0\left(1\right)\)

a/ ( a = 2; b = -2m; c = -m - 5 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.2.\left(-m-5\right)\)

   \(=4m^2+8m+40\)

    \(=\left(2m\right)^2+8m+2^2-2^2+40\)

     \(=\left(2m+2\right)^2+36>0\forall m\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=\frac{2m}{2}=m\\P=x_1x_2=\frac{c}{a}=\frac{-m-5}{2}\end{cases}}\)

Ta có: \(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=15\)

    \(\Leftrightarrow x_1^2-2x_1x_2+x_2^2-2x_1x_2=15\)

    \(\Leftrightarrow S^2-2P-4x_1x_2=15\)

    \(\Leftrightarrow m^2-2.\frac{-m-5}{2}-4S=15\)

   \(\Leftrightarrow m^2+\frac{2m+10}{2}-4m=15\)

  Quy đồng bỏ mẫu, mẫu chung là 2:

  \(\Leftrightarrow2m^2+2m+10-8m=15\)

  \(\Leftrightarrow2m^2-6m+10=15\)

 \(\Leftrightarrow2\left(m^2-3m+5\right)=15\)

 \(\Leftrightarrow m^2-3m+5=\frac{15}{2}\)

 \(\Leftrightarrow m^2-3m+5-\frac{15}{2}=0\)

  \(\Leftrightarrow m^2-3m-\frac{5}{2}=0\)

 \(\Leftrightarrow m^2-3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-\frac{5}{2}=0\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2-\frac{19}{4}=0\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\frac{19}{4}\)

\(\Leftrightarrow\left(m-\frac{3}{2}\right)^2=\left(\frac{\sqrt{19}}{2}\right)^2\)

\(\Leftrightarrow m-\frac{3}{2}=\frac{\sqrt{19}}{2}\Leftrightarrow m=\frac{3+\sqrt{19}}{2}\)

Vậy:..

2 tháng 11 2017

 Cho hàm số y=f(x)=x3-3x2+1

a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.

b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).

c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.

Câu 1 Cho biểu thức: 1) Tìm điều kiện của x để biểu thức A có nghĩa.2) Rút gọn biểu thức A3) Giải phương trình theo x khi A = -2Câu 2 Giải phương trình: Câu 3: Trong mặt phẳng tọa độ cho điểm A (-2, 2) và đường thẳng (D) : y =-2(x + 1).a) Điểm A có thuộc (D) hay không?b) Tìm a trong hàm số y = ax2 có đồ thị (P) đi qua A.c) Viết phương trình đường thẳng đi qua A và vuông góc với (D)Câu 4 Cho hình...
Đọc tiếp

Câu 1 

Cho biểu thức:

 

1) Tìm điều kiện của x để biểu thức A có nghĩa.

2) Rút gọn biểu thức A

3) Giải phương trình theo x khi A = -2

Câu 2 

Giải phương trình:

 

Câu 3: 

Trong mặt phẳng tọa độ cho điểm A (-2, 2) và đường thẳng (D) : y =-2(x + 1).

a) Điểm A có thuộc (D) hay không?

b) Tìm a trong hàm số y = ax2 có đồ thị (P) đi qua A.

c) Viết phương trình đường thẳng đi qua A và vuông góc với (D)

Câu 4 

Cho hình vuông ABCD cố định, có độ dài cạnh là a. E là điểm di chuyển trên đoạn CD (E khác D), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại K.

1) Chứng minh tam giác ABF = tam giác ADK từ đó suy ra tam giác AFK vuông cân.

2) Gọi I là trung điểm của FK. Chứng minh I là tâm đường tròn đi qua A, C, F, K.

3) Tính số đo góc AIF suy ra 4 điểm A, B, F, I cùng nằm trên một đường tròn.

0
Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0
Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0
Đề mình tổng hợp cho các bạn thi hsg toán 9.+) Yêu cầu:Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?Ví dụ: Bài 1: Giải:....Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12Đề bài: Câu 1:a)...
Đọc tiếp

Đề mình tổng hợp cho các bạn thi hsg toán 9.

+) Yêu cầu:

Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?

Ví dụ: Bài 1: Giải:....

Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.

+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12

Đề bài: 

Câu 1:

a) Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức: \(A=x^5-4x^4+x^3-x^2-2x+2019\)

b) Cho \(x=\sqrt[3]{2+2\sqrt{3}}+\sqrt[3]{2-2\sqrt{3}}-1\). Tính giá trị biểu thức \(P=x^3\left(x^2+3x+9\right)^3\)

Câu 2:

a) Giải phương trình \(\frac{\left(x-4\right)\sqrt{x-2}-1}{\sqrt{4-x}+x-5}=\frac{2+\left(2x-4\right)\sqrt{x-2}}{x-1}\)

b) Giải hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{x+2}+\sqrt{x+3}=\sqrt{y-1}+\sqrt{y-2}+\sqrt{y-3}\\x^2+y^2=10\end{cases}}\)

Câu 3:

a) Cho hai đa thức \(f\left(x\right)=\frac{1}{x}+\frac{1}{x-2}+\frac{1}{x-4}+...+\frac{1}{x-2018}\)và \(g\left(x\right)=\frac{1}{x-1}+\frac{1}{x-3}+\frac{1}{x-5}+...+\frac{1}{x-2017}\)

Chứng minh rằng :\(\left|f\left(x\right)-g\left(x\right)\right|>2\)với x là các số nguyên thỏa mãn 0 < x < 2018

b) Cho m, n là hai số nguyên dương lẻ sao cho \(n^2-1\)chia hết cho \(\left|m^2-n^2+1\right|\). Chứng minh rằng \(\left|m^2-n^2+1\right|\)là số chính phương

c) Tìm nghiệm nguyên dương của phương trình \(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)với điều kiện x, y là các số nguyên tố

d) Chứng minh rằng phương trình \(x^{15}+y^{15}+z^{15}=19^{2003}+7^{2003}+9^{2003}\)không có nghiệm nguyên

Câu 4:

a) Cho điểm A cố định thuộc trên đường tròn (O; R). BC là dây cung của đường tròn (O; R), BC di động và tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Tiếp tuyến tại B, C của đường tròn (O) cắt nhau ở G. Gọi S là giao điểm của GD và EF. Chứng minh rằng đường thẳng SH luôn đi qua một điểm cố định.

b) Cho tam giác ABC vuông tại C, D là chân đường cao vẽ từ C. Cho X là điểm bất kì thuộc đoạn thẳng CD (X khác C và D). Cho K là điểm trên đoạn thẳng AX sao cho BK = BC. Tương tự L là điểm trên đoạn thẳng BX sao cho AL = AC. Cho M là giao điểm của AL và BK. Chứng minh rằng MK = ML

Câu 5:

a)  Cho a, b, c là các số thực dương thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng:\(8\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+9\ge10\left(a^2+b^2+c^2\right)\)

b) Cho tập hợp X = {0;1;2;...;14}. Gọi A là một tập hợp gồm 6 phần tử được lấy ra từ X. Chứng minh rằng trong các tập hợp con thực sự của A luôn tìm được hai tập có tổng các phần tử bằng nhau . (Tập hợp con thực sự của tập Y là tập con của Y khác tập rỗng và khác Y)

P/s: Đề bài tổng hợp có gì sai sót mong các bạn góp ý  và bổ sung  không cãi nhau; spam gây mất trật tự. 

12
1 tháng 9 2020

Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))

sol nhẹ vài bài

\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)

\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\) 

Khi đó \(z-y⋮x;z+y+3⋮x\)

Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\) 

Trường hợp này loại

Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)

Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)

\(\Rightarrow z< x+y\)

Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)

Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)

Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và  \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)

\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z

\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)

\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)

Vậy.............

1 tháng 9 2020

Bài 1 : Giải :

a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)

\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)

\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)

\(\Rightarrow x+1=x\sqrt[3]{2}\)

\(\Rightarrow\left(x+1\right)^3=2x^3\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)

\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)

\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)

\(=2020\)

P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0...
Đọc tiếp

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0 a) Chứng minh phương trình luôn có nghiệm với mọi m; b) Tim m để phương trình có hai nghiệm x, X2; X < X2 sao cho x - 2x = -2. Câu 4: (2,0 điểm) Cho đường tròn (0; 6cm) và A là điểm nằm ngoài đường tròn (0) sao cho OA = 10cm. Qua A về các tiếp tuyến AB, AC với đường tròn (0) (B,C là các tiếp điểm); AO cắt BC tại H. a) Chứng minh tứ giác OBAC nội tiếp được; b) Tính độ dài đoạn thẳng BH; c) Vẽ đường kính BD của đường tròn (0). Chứng minh CD I OA

0
1/Chu vi hình tròn có bán kính 5 cm là :A. 2,5π cmB. 5π cmC. 2π cmD. 10π cm2/ Diện tích hình quạt tròn có d=4cm và số đo cung = 36° là :A.4π/5 dm2B. 8π/5 dm2C. 2π/5 dmD. 2π/5 dm23/ Khẳng định nào sau đây là khẳng định đúng :A. Hai cung có số đo = nhau thì = nhauB. Góc nội tiếp chắn nửa đường tròn là góc vuôngC. Trong 1 đường tròn, các góc nội tiếp = nhau thì cùng chắn 1 cungD. Tứ giác có tổng hai góc bằng...
Đọc tiếp

1/Chu vi hình tròn có bán kính 5 cm là :
A. 2,5π cm
B. 5π cm
C. 2π cm
D. 10π cm
2/ Diện tích hình quạt tròn có d=4cm và số đo cung = 36° là :
A.4π/5 dm2
B. 8π/5 dm2
C. 2π/5 dm
D. 2π/5 dm2
3/ Khẳng định nào sau đây là khẳng định đúng :
A. Hai cung có số đo = nhau thì = nhau
B. Góc nội tiếp chắn nửa đường tròn là góc vuông
C. Trong 1 đường tròn, các góc nội tiếp = nhau thì cùng chắn 1 cung
D. Tứ giác có tổng hai góc bằng 180° thì nội tiếp được đường tròn
4/ Cho đường tròn tâm O, có đường kính AB vuông góc với dây CD tại E. Khẳng định nào sau đây sai :
A. AC>AD
B. CE>ED
C. cung AC > cung AD
D. cung BC > cung BD
5/ Trên đường tròn tâm O lấy hai điểm A, B sao cho góc AOB=60°. Số đo cung nhỏ AB là :
A. 120°
B. 300°
C. 30°
D. 60°
6/ Bán kính của đường tròn có diện tích 9π (cm2) là 
A. 9 cm
B. 3 cm
C. 6 cm
D. 4.5 cm
7/ Tìm hai số tự nhiên biết tổng của hai số tự nhiên bằng 2017, nếu lấy số lớn chia cho số nhỏ thì được thương là 117 dư 11. Gọi x,y là hai số tự nhiên cần tìm ( x>y ) . Khi đó ta lập được hệ pt nào sau đây :
A.{x+y =2017
     x=117y+11
B. {x+ y = 2017
      y=117x +11
C. {x+y=2017
      x+117y= 11
D. { x+y=2017
       x=117y-11
8/ Cho pt ẩn x : x2 + ( m+1 )x +m = 0 ( m là tham số ). ĐK của m để pt có nghiệm là :
A. với m>=0
B. với mọi giá trị của m
C. với m=0
D. với m>0
9/ Pt 5x2 -15x +10 =0 có nghiệm là :
A. S=15
B. S=10
C. S=3
D. S= -3
10/ Độ dài đường tròn tâm O bán kính 3 cm là bao nhiêu ?
A. 9π ( cm )
B. 6π ( cm )
C. 9π ( cm2 )
D. 6π ( cm2 )
11/ Điểm nào sau đây thuộc đồ thị hàm số x=-2
A. M(2;-4)
B. P (1;1 )
C. Q ( -4;2 )
D. N (2;4 )
12/ Nghiệm của hệ pt {2x+y=2 là ?
                                          x - y=4
A. ( -2;2 )
B. ( 1;-5 )
C. ( 3; -1 )
D. ( 2; -2 )
13/ Hệ pt {2x-3y=m-1 
                   4x+my=-14  

vô số nghiệm khi :
A. m=1
B. m=-1
C. m= 6
D. m=-6

0
7 tháng 11 2017

Bài 3 làm sao v ạ?