Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a là số chữ số của n.
dễ thấy S(n)>0 => n>2012 => a ≥ 4
với n=2013 thấy thỏa mãn.
với n>2013 ta có: S(n)=n(n-2014)+n+6 ≥ n+6 > n > $10^a$10a 10^a> 9a (với a ≥ 4)
n= 2352
Goi n = abcd
S(n) < 36 nên a=2, b=3
Từ đó suy ra: 11c + 2d=59
Câu hỏi của Dung Viet Nguyen - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Câu 1 :
Ta có :
abcabc = abc . 7 . 11 . 13
=> abc . 7 . 11 . 13 chia hết cho 11
=> abcabc chia hết cho 11
=> 3abcabc chia hết cho 11
Mà 3abcabc chia hết cho 11
605 chia hết cho 11
=> 3abcabc - 605 chia hết cho 11
n < 2014 =>\(S_n\le\)1 + 9 + 9 + 9 = 28\(\Rightarrow n\ge\)2014 - 28 = 1986.Đặt n = abcd.Ta có bảng sau :
abc | n | Sn | Phương trình | d |
198\(\left(d\ge6\right)\) | 1980 + d | 18 + d | 1998 + 2d = 2014 | 8 |
199 | 1990 + d | 19 + d | 2009 + 2d = 2014 | x |
200 | 2000 + d | 2 + d | 2002 + 2d = 2014 | 6 |
201 | 2010 + d | 3 + d | 2013 + 2d = 2014 | x |
Vậy n = 1988 ; 2006
Ta có \(N^2=\left(n_1+n_2+...+n_{100}\right)^2=n_1^2+n_2^2+...+n_{100}^2+2A=2013^2\) (A là tập hợp các số còn lại mà chia hết cho 2, ký hiệu vậy cho nó gọn)
\(\Rightarrow S=2013^2-2A\)
\(\Rightarrow S-1=2013^2-1-2A\)
Ta thấy rằng 2A chia hết cho 2 và 20132 - 1 chia hết cho 2 nên S - 1 chia hết cho 2
Giả sử khi biểu diễn số tự nhiên n dưới dạng số thập phân,ta được:
\(n=a_m\cdot10^m+a_{m-1}\cdot10^{m-1}+....+a_1\cdot10+a_0\)với \(a_i\)là các chữ số,\(i=0,1,2,3,....,m\)và \(m\inℕ\)
\(\Rightarrow n\ge a_m+a_{m-1}+....+a_0\)
\(\Rightarrow n\ge S\left(n\right)\)
\(\Rightarrow n\ge n^2-2013n+6n\)
\(\Rightarrow n^2+6\le2014n\)
\(\Rightarrow n+\frac{6}{n}\le2014\)
\(\Rightarrow n< 2014\left(1\right)\)
Mà \(S\left(n\right)\ge0\)
\(\Rightarrow n^2-2013n+6\ge0\)
\(\Rightarrow n^2+6\ge2013n\)
\(\Rightarrow n+\frac{6}{n}\ge2013\)
\(\Rightarrow n\ge2013\left(2\right)\)
Từ (1) và (2) suy ra n=2013
Thay vào bài toán,ta được:
\(S_{2013}=2013^2-2013\cdot2013+6\left(TM\right)\)
Vậy số tự nhiên n cần tìm là 2013