Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Dung Viet Nguyen - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Có \(n^{10}\) + 1 chia hết cho 10 => \(n^{10}\) = \(n^{5.2}\) = (\(n^5\))\(^2\) có tận cũng bằng 9.
=> \(n^5\) tận cũng bằng 3 hoặc 7
=> n tận cũng bằng 3 hoặc 7
Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.
+ Qua ví dụ 1 rút ra cách làm như sau:
Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).
n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho 4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả
2011 có tổng các chữ số là 2+0+1+1=4 \(⋮̸3\)=> 2011 không chia hết cho 3 => 2011n \(⋮̸3\)
Ta biết rằng 3 số liên tiếp luôn tồn tại ít nhất một số chia hết cho 3
xét 3 số 2011n ; 2011n +1; 2011n +2 là 3 số liên tiếp mà 2011n \(⋮̸3\)=> 1 trong 2 số còn lại phải chia hết cho 3 => (2011n +1)(2011n +2) \(⋮3\)với mọi n tự nhiên
a,
Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2
Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:
a=3k hoạc a=3k+1 hoặc a=3k+2
* Nếu a=3k thì a sẽ chia hết cho 2. (1)
* Nếu a=3k+2 thì a+1=3k+2
a =3k+3
Vì 3k chia hết cho 3
3 chia hết cho 3
=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3 (2)
* Nếu a=3k+1 thì a+2=3k+1
a =3k+3
Vì 3k chia hết cho 3
3 chia hết cho 3
=> 3k+3 chia hết cho 3 hay a+2 chia hết cho 3 (3)
Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Có đó bạn. Nếu bạn lấy bất kì số \(n\) nào có dạng \(10k\pm3\) (tức là chia 10 dư 3 hoặc dư 7) thì \(n^{10}+1\) sẽ chia hết cho 10. Ví dụ:
\(7=10.1-3\Rightarrow7^{10}+1=282475250⋮10\)
trả lời giùm tớ đi các ban ko thôi tớ sẽ bị cô la
Câu hỏi của Dung Viet Nguyen - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.