\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2023

A=(-1/4.5)+(-1/5.6)+(-1/6.7)+(-1/7.8)+(-1/8x9)+(-1/9.10)

A=(-1/4)-(-1/5)+(-1/5)-(-1/6)+(-1/6)-(-1/7)+(-1/7)-(-1/8)+(-1/8)-(-1/9)-(-1/9)+(-1/10)

A=(-1/4)-(-1/10)

A=-1/4+1/10

A=-3/20

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:

a)

\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+....+\frac{-1}{90}\)

\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+...+\frac{-1}{9.10}\)

\(=\frac{4-5}{4.5}+\frac{5-6}{5.6}+\frac{6-7}{6.7}+....+\frac{9-10}{9.10}\)

\(=\frac{1}{5}-\frac{1}{4}+\frac{1}{6}-\frac{1}{5}+\frac{1}{7}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{9}\)

\(=\frac{1}{10}-\frac{1}{4}=-\frac{3}{20}\)

b)

\(2B=5+\frac{8}{11}+\frac{3}{11}+\frac{1}{15}+\frac{13}{15.2}\)

\(=5+\frac{11-3}{11}+\frac{3}{11}+\frac{1}{15}+\frac{15-2}{15.2}\)

\(=5+1-\frac{3}{11}+\frac{3}{11}+\frac{1}{15}+\frac{1}{2}-\frac{1}{15}\)

\(=5+1+\frac{1}{2}=\frac{13}{2}\Rightarrow B=\frac{13}{4}\)

31 tháng 12 2018

Thanks

mk làm câu a cách khác ; nhưng cũng = \(\dfrac{-3}{20}\)

2 tháng 8 2017

\(A=\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)

\(=-\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)

\(=-\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)

\(=-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

\(=-\left(\dfrac{1}{4}-\dfrac{1}{10}\right)\)\(=-\dfrac{3}{20}\)

2 tháng 8 2017

Bài 1. ko quy đồng hãy tính hợp lý:

\(A=\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)

\(A=\dfrac{-1}{4.5}+\dfrac{-1}{5.6}+\dfrac{-1}{6.7}+\dfrac{-1}{7.8}+\dfrac{-1}{8.9}+\dfrac{-1}{9.10}\)

\(A=\dfrac{-1}{4}-\dfrac{-1}{5}+\dfrac{-1}{5}-\dfrac{-1}{6}+\dfrac{-1}{6}-\dfrac{-1}{7}+\dfrac{-1}{7}-\dfrac{-1}{8}+\dfrac{-1}{8}-\dfrac{-1}{9}+\dfrac{-1}{9}-\dfrac{-1}{10}\)

\(A=\dfrac{-1}{4}-\dfrac{-1}{10}\)

\(A=\dfrac{-3}{20}\)

30 tháng 5 2023

D = 1 + \(\dfrac{-1}{20}\) + \(\dfrac{-1}{30}\) + \(\dfrac{-1}{42}\)\(\dfrac{-1}{56}\)\(\dfrac{-1}{72}\)\(\dfrac{-1}{90}\)

D = 1 - ( \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\)\(\dfrac{1}{6\times7}\)\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+\(\dfrac{1}{9\times10}\))

D = 1 - ( \(\dfrac{1}{4}\) - \(\dfrac{1}{10}\))

D = 1 - \(\dfrac{3}{20}\)

D = \(\dfrac{17}{20}\)

30 tháng 5 2023

D=1+(1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10)

D=1+(1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)

D=1+(1/4-1/10)

D=1+3/5

D=8/5

7 tháng 5 2017

Ta có:

\(\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)-x=\dfrac{-19}{24}\)

\(\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)-x=\dfrac{-19}{24}\)\(\left(\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\right)-x=\dfrac{-19}{24}\)

\(\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)\(\left(\dfrac{1}{3}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)

\(\dfrac{7}{30}-x=\dfrac{-19}{24}\)

\(x=\dfrac{7}{30}-\dfrac{-19}{24}\)

\(x=\dfrac{41}{40}\)

7 tháng 5 2017

\(\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)-x=\dfrac{-19}{24}\)

\(\Leftrightarrow\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right)-x=\dfrac{-19}{24}\)

\(\Leftrightarrow\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)

\(\Leftrightarrow\left(\dfrac{1}{3}-\dfrac{1}{10}\right)-x=\dfrac{-19}{24}\)

\(\Leftrightarrow\dfrac{7}{30}-x=\dfrac{-19}{24}\)

\(\Rightarrow x=\dfrac{7}{30}-\dfrac{-19}{24}\)

\(\Rightarrow x=\dfrac{41}{40}\)

22 tháng 4 2017

Bài 1: Ta có:

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)

\(=\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\)

\(=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\)

\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+...+\dfrac{1}{26}-\dfrac{1}{32}\right)\)

\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{32}\right)=\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)

Vậy \(M=\dfrac{5}{16}\)

Bài 2: Ta có:

\(A=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{210}\)

\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{14.15}\)

\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{14}-\dfrac{1}{15}\)

\(=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{1}{10}\)

Vậy \(A=\dfrac{1}{10}\)

22 tháng 4 2017

Giải:

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}.\)

\(M=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+\dfrac{5}{208}.\)

\(M=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+\dfrac{5}{13.16}.\)

\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right).\)

\(M=\dfrac{5}{3}\left[\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(\dfrac{1}{10}-\dfrac{1}{10}\right)+\left(\dfrac{1}{13}-\dfrac{1}{13}\right)+\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\right].\)

\(M=\dfrac{5}{3}\left[0+0+0+\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\right]\)

\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\)

\(M=\dfrac{5}{3}\left(\dfrac{4}{16}-\dfrac{1}{16}\right).\)

\(M=\dfrac{5}{3}.\dfrac{3}{16}.\)

\(M=\dfrac{15}{48}=\dfrac{5}{16}.\)

13 tháng 4 2017

\(D=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\) \(=\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{7}{30}\)

1 tháng 5 2017

\(D=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

=\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(\dfrac{1}{3}-\dfrac{1}{10}\)

= \(\dfrac{7}{30}\)

26 tháng 5 2017

\(S=\dfrac{1}{2}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\)

\(S=\dfrac{1}{2}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)

\(S=\dfrac{1}{2}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)\(S=\dfrac{1}{2}+\dfrac{1}{5}-\dfrac{1}{11}\)

\(S=\dfrac{67}{110}\)

26 tháng 5 2017

bn có nhầm \(\dfrac{1}{2}\) với \(\dfrac{1}{20}koz\)

31 tháng 3 2017

\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(\Rightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(\Rightarrow B=\dfrac{3}{2.3}-\dfrac{2}{2.3}+\dfrac{4}{3.4}-\dfrac{3}{3.4}+...+\dfrac{10}{9.10}-\dfrac{9}{9.10}\)

\(\Rightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow B=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)

31 tháng 3 2017

\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\\ B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\\ B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\\ B=\dfrac{1}{2}-\dfrac{1}{10}\\ B=\dfrac{5}{10}-\dfrac{1}{10}\\ B=\dfrac{4}{10}\\ B=\dfrac{2}{5}\)

2 tháng 5 2017

\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)

=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+\(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+\(\dfrac{1}{8.9}\)+\(\dfrac{1}{9.10}\)

=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)

=\(\dfrac{1}{1}\)-\(\dfrac{1}{10}\)=\(\dfrac{10}{10}\)-\(\dfrac{1}{10}\)=\(\dfrac{9}{10}\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}=\dfrac{9}{10}\)

2 tháng 5 2017

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(1-\dfrac{1}{10}\) = \(\dfrac{9}{10}\)