Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có: \(\overline{abcabc}\)
Ta có: \(\overline{abcabc}\)=\(\overline{abc}\) \(\times\)1001
mà 1001\(⋮\) 7.
\(\Rightarrow\) (\(\overline{abc}\) \(\times\)1001) \(⋮\)7
\(\Rightarrow\) \(\overline{abcabc}\) \(⋮\) 7
Muốn tạo số chia hết cho 4 thì 2 chữ số tận cùng phải chia hết cho 4
Gọi các số cần tìm có dạng \(\overline{abc}\left(a,b,c\in N;0< a< 10;0\le b,c< 10\right)\)
Mà \(\overline{abc}⋮4\Rightarrow\overline{bc}\in\left\{00;04;12;16;20;24;40;44;60;64\right\}\)
Với mỗi cặp \(\overline{bc}\) ta có \(a\in\left\{1;2;4;6\right\}\left(4\text{ cách chọn}\right)\)
Vậy có thể tạo \(4\cdot10=40\) số thỏa yêu cầu đề
A.Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29
C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.
3 k nhé..
Kiểu 1 :
Lấy 8 số tự nhiên đó chia cho 7 ta được 7 giá trị dư từ 1 đến 7
Theo nguyên lí Dirichlet sẽ có 2 số có cùng số dư khi chia cho 7
Gọi 2 số đó là abc và deg
Ta có :
abc-deg chia hết cho 7
abcdeg=1001abc-(abc-deg)
Vì 1001abc chia hết cho 7 nên 1001abc-(abc-deg) chia hết cho 7
Vậy trong 8 số tự nhiên có 3 chữ số bao giờ cũng chọn ra 2 số mà khi viết liền nhau tạo được 1 số có 6 chữ số chia hết cho 7
Kiểu 2 :
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13
Ta có: abcdeg + (abc-deg)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0 = 1001.abc
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13
=> abcdeg + (abc-deg) chia hết cho 13
Mà abc-deg chia hết cho 13
Nên abcdeg chia hết cho 13
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13
dù không hiểu nhưng mik cảm ơn nhiều