Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có: \(\overline{abcabc}\)
Ta có: \(\overline{abcabc}\)=\(\overline{abc}\) \(\times\)1001
mà 1001\(⋮\) 7.
\(\Rightarrow\) (\(\overline{abc}\) \(\times\)1001) \(⋮\)7
\(\Rightarrow\) \(\overline{abcabc}\) \(⋮\) 7
Kiểu 1 :
Lấy 8 số tự nhiên đó chia cho 7 ta được 7 giá trị dư từ 1 đến 7
Theo nguyên lí Dirichlet sẽ có 2 số có cùng số dư khi chia cho 7
Gọi 2 số đó là abc và deg
Ta có :
abc-deg chia hết cho 7
abcdeg=1001abc-(abc-deg)
Vì 1001abc chia hết cho 7 nên 1001abc-(abc-deg) chia hết cho 7
Vậy trong 8 số tự nhiên có 3 chữ số bao giờ cũng chọn ra 2 số mà khi viết liền nhau tạo được 1 số có 6 chữ số chia hết cho 7
Kiểu 2 :
Trong 14 số tự nhiên có 3 chữ số chắc chắn có 2 số chia cho 13 có cùng số dư
Nên hiệu của chúng chia hết cho 13
Gọi số có 6 chữ số chia hết cho 13 là abcdeg (có gạch trên đầu) thì abc-deg chia hết cho 13
Ta có: abcdeg + (abc-deg)
= abcdeg + abc-deg
= 1000.abc + deg + abc - deg
= (1000+1).abc + (deg-deg)
= 1001.abc + 0 = 1001.abc
Vì 1001 chia hết cho 13 nên 1001.abc cũng chia hết cho 13
=> abcdeg + (abc-deg) chia hết cho 13
Mà abc-deg chia hết cho 13
Nên abcdeg chia hết cho 13
Vây trong 14 số đó tồn tại 2 số mà khi viết liên nhau thì tạo thành số có 6 chữ số chia hết cho 13
Quy tắc thứ nhất: Lấy chữ số đầu tiên bên trái nhân với 3 rồi cộng với chữ số thứ hai rồi trừ cho bội của 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 3 rồi trừ cho bội củ 7; được bao nhiêu nhân với 3 cộng với chữ số thứ 4 rồi trừ cho bội của 7; .... Nếu kết quả cuối cùng là một số chia hết cho 7 thì số đã cho chia hết cho 7.
Ví dụ: a) cho số 714
-có (7.3 + 1) - 3.7 = 1
-có (1.3 + 4) - 7 = 0
Vậy số 714 chia hết cho 7.
Kểm tra thấy: 714 = 7.102
b) cho số 24668
-có (2.3 + 4) - 7 = 3
-tiếp theo (3.3 + 6) - 2.7 = 1
-tiếp theo (1.3 + 6) - 7 = 2
-cuối cùng 2.3 + 8 = 14 chia hết cho 7
Vậy số 24668 chia hết cho 7
Kiểm tra thấy: 24668 = 7.3524