Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(=\dfrac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}=\dfrac{3x}{x^2+1}\)
a, \(\left(2x-3y\right)^3=8x^3-36x^2y+54xy^2-27y^3\)
b, \(\left(2x+\dfrac{9}{2}\right)^3=8x^3-54x^2+121,5x-91,125\)
c, \(\left(x+2y\right)^3+\left(x-2y\right)^3=x^3+6x^2y+12xy^2+8y^3+x^3-6x^2y+12xy^2-8y^3\)
\(=2x^3+24xy^3\)
d, \(\left(2x+1\right)^3-\left(x-1\right)^3-7\left(x+1\right)^3\)
\(=8x^3+12x^2+6x+1-\left(x^3-3x^2+3x-1\right)-7\left(x^3+3x^2+3x+1\right)\)
\(=8x^3+12x^2+6x+1-x^3+3x^2-3x+1-7x^3-21x^2-21x-7\)
\(=-6x^2-18x-5\)
Chúc bạn học tốt!!!
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)
a) \(\left(\dfrac{x^2}{2}+y^2\right)^2\)
\(=\left(\dfrac{1}{2}x^2+y^2\right)^2\)
\(=\left(\dfrac{1}{2}x^2\right)^2+2\cdot\dfrac{1}{2}x^2\cdot y^2+\left(y^2\right)^2\)
\(=\dfrac{1}{4}x^4+x^2y^2+y^4\)
b) \(\left(\dfrac{4}{5}x^2-\dfrac{2}{3}y\right)^2\)
\(=\left(\dfrac{4}{5}x^2\right)^2-2\cdot\dfrac{4}{5}x^2\cdot\dfrac{2}{3}y+\left(\dfrac{2}{3}y\right)^2\)
\(=\dfrac{16}{25}x^4-\dfrac{16}{15}x^2y+\dfrac{4}{9}y^2\)
c) \(\left(2x+\dfrac{1}{2}\right)\left(2x-\dfrac{1}{2}\right)\)
\(=\left(2x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=4x^2-\dfrac{1}{4}\)
a: (1/2x^2+y^2)^2
=(1/2x^2)^2+2*1/2x^2*y^2+y^4
=1/4x^4+x^2y^2+y^4
b: (4/5x^2-2/3y)^2
=(4/5x^2)^2-2*4/5x^2*2/3y+4/9y^2
=16/25x^4-16/15x^2y+4/9y^2
c: =(2x)^2-(1/2)^2
=4x^2-1/4
a: =-4xyz^2
b: =-9x^2y
c: =16x^2y^2
d: =1/6x^2y^3
e: =13/6x^3y^2
f: =7/12x^4y
a) -xyz² - 3xz.yz
= -xyz² - 3xyz²
= -4xyz²
b) -8x²y - x.(xy)
= -8x²y - x²y
= -9x²y
c) 4xy².x - (-12x²y²)
= 4x²y² + 12x²y²
= 16x²y²
d) 1/2 x²y³ - 1/3 x²y.y²
= 1/2 x²y³ - 1/3 x²y³
= 1/6 x²y³
e) 3xy(x²y) - 5/6 x³y²
= 3x³y² - 5/6 x³y²
= 13/6 x³y²
f) 3/4 x⁴y - 1/6 xy.x³
= 3/4 x⁴y - 1/6 x⁴y
= 7/12 x⁴y
a)
\(\begin{array}{l}{\left( {{x^2} + 2y} \right)^3} = {\left( {{x^2}} \right)^3} + 3.{\left( {{x^2}} \right)^2}.2y + 3.{x^2}.{\left( {2y} \right)^2} + {\left( {2y} \right)^3}\\ = {x^6} + 6{x^4}y + 12{x^2}{y^2} + 8{y^3}\end{array}\)
b)
\({\left( {\dfrac{1}{2}x - 1} \right)^3} = {\left( {\dfrac{1}{2}x} \right)^3} - 3.{\left( {\dfrac{1}{2}x} \right)^2}.1 + 3.\dfrac{1}{2}x{.1^2} - {1^3} = \dfrac{1}{8}{x^3} - \dfrac{3}{4}{x^2} + \dfrac{3}{2}x - 1\)