Kết quả phân tích đa thức 6 x 2 y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

A

B(hơi sai)

2 tháng 9 2018

\(x^3+8y^3+2xy^2+x^2y\)

\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)

\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)

29 tháng 9 2018

g) x2 - 2xy + y2 - z2

= ( x - y )2 - z2

= ( x - y + z ) ( x - y - z )

h) 9x2y2 + 6xy2 + y2 - 1  

= ( 3xy + y )2 - 1

= ( 3xy + y - 1 ) ( 3xy + y + 1 )

i ) x2 - x - 2

= x2 - 2x + x - 2 

= x ( x - 2 ) + ( x - 2 )

= ( x - 2 ) ( x + 1 ) 

12 tháng 10 2019

\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)

    \(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)

    \(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)

\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)

    \(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)

    \(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).

8 tháng 3 2017

a)\(x^2-y^2-x+3y-2=\left(x^2+xy-2x\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)\)

\(=x\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)\)

\(=\left(x+y-2\right)\left(x-y+1\right)\)

b)\(x^3+y^3+6xy+x+y-10\)

\(=\left(x^3+xy^2-x^2y+2x^2+2xy+5x\right)+\left(y^3+x^2y+xy^2+2y^2+2xy+5y\right)-\left(2x^2+2y^2-2xy+4x+4y+10\right)\)

\(=x\left(x^2+y^2-xy+2x+2y+5\right)+y\left(y^2+x^2-xy+2y+2x+5\right)-2\left(x^2+y^2-xy+2x+2y+5\right)\)\(=\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+5\right)\)

13 tháng 10 2018

a/ \(x^2-5x+5y-y^2=\left(x^2-y^2\right)-\left(5x-5y\right)=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)

b/ \(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x^2-2xy+y^2\right)-\left(2x\right)^2\right]=3\left[\left(x-y\right)^2-\left(2x\right)^2\right]=3\left(x-y-2x\right)\left(x-y+2x\right)=3\left(-x-y\right)\left(3x-y\right)\)

c/ \(x^2-2xy+y^2-xz+yz=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

d/ \(x^2-x+2y-4y^2=\left(x^2-4y^2\right)-\left(x+2y\right)=\left(x+2y\right)\left(x-2y\right)-\left(x+2y\right)=\left(x+2y\right)\left(x-2y-1\right)\)

e/ \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

13 tháng 10 2018

a) x2 - 5x + 5y - y2

= ( x2 - y2 ) - ( 5x - 5y )

= ( x - y )( x + y ) - 5( x - y )

= ( x - y )( x + y - 5 )

b) 3x2 - 6xy + 3y2 - 12z2

= 3( x2 - 2xy + y2 - 4z2 )

= 3[( x2 - 2xy + y2 ) - 4z2 ]

= 3[( x - y )2 - 4z2 ]

= 3( x - y - 2z )( x - y + 2z )

c) x2 - 2xy + y2 - xz - yz

= ( x2 - 2xy + y2 ) - ( xz - yz )

= ( x - y )2 - z( x - y )

= ( x - y )( x - y - z )

d) x2 - x + 2y - 4y2

= ( x2 - 4y2 ) - ( x - 2y )

= ( x - 2y )( x + 2y ) - ( x - 2y )

= ( x - 2y )(x + 2y - 1 )

e) x6 - y6

= ( x3 )2 - ( y3 )2

= ( x3 - y3 )( x3 + y3 )

= ( x - y )( x2 + xy + y2 )( x + y )( x2 - xy + y2 )

Chúc bạn học tốt hihi

26 tháng 7 2018

Dùng hằng đẳng thức là xong

a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

b,  \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

11 tháng 12 2018

\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)

\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

Tham khảo nhé~

3 tháng 6 2017

a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)

3 tháng 6 2017

PTNN là gì bạn ?

3 tháng 7 2018

Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ

Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y\right)\left(x+y-1\right)-12\)

Đặt: \(x+y=t\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12\)

\(=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)

\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))

Câu d) Đặt biến phụ

Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)

\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)

\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)

\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)

Đặt \(t=5x^2-2x\)

\(=t\left(t-1\right)-6\)

\(=t^2-t-6\)

\(=t^2-t-9+3\)

\(=\left(t^2-3^2\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)

\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào 

3 tháng 7 2018

Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức

Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)

Đặt: \(t=2x^2+x-2\)

\(=t\left(t-1\right)-12\)

\(=t^2-t-12=t^2-t-9-3\)

\(=\left(t^2-3^2\right)-\left(t+3\right)\)

\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)

Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)

Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ 

Ta có: \(x^2+9y^2-9y-3x+6xy+2\)

\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)

\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)

\(=\left(x+3y\right)\left(x+3y-3\right)+2\)

Đặt \(t=x+3y\)

\(=t\left(t-3\right)+2\)

\(=t^2-3t+2\)

\(=\left(t^2-4\right)-\left(3t-6\right)\)

\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)

\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào

Còn mấy bài sau đang nghiên cứu