Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
a)\(x^2-y^2-x+3y-2=\left(x^2+xy-2x\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)\)
\(=x\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)\)
\(=\left(x+y-2\right)\left(x-y+1\right)\)
b)\(x^3+y^3+6xy+x+y-10\)
\(=\left(x^3+xy^2-x^2y+2x^2+2xy+5x\right)+\left(y^3+x^2y+xy^2+2y^2+2xy+5y\right)-\left(2x^2+2y^2-2xy+4x+4y+10\right)\)
\(=x\left(x^2+y^2-xy+2x+2y+5\right)+y\left(y^2+x^2-xy+2y+2x+5\right)-2\left(x^2+y^2-xy+2x+2y+5\right)\)\(=\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+5\right)\)
a/ \(x^2-5x+5y-y^2=\left(x^2-y^2\right)-\left(5x-5y\right)=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\)
b/ \(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x^2-2xy+y^2\right)-\left(2x\right)^2\right]=3\left[\left(x-y\right)^2-\left(2x\right)^2\right]=3\left(x-y-2x\right)\left(x-y+2x\right)=3\left(-x-y\right)\left(3x-y\right)\)
c/ \(x^2-2xy+y^2-xz+yz=\left(x^2-2xy+y^2\right)-\left(xz-yz\right)=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
d/ \(x^2-x+2y-4y^2=\left(x^2-4y^2\right)-\left(x+2y\right)=\left(x+2y\right)\left(x-2y\right)-\left(x+2y\right)=\left(x+2y\right)\left(x-2y-1\right)\)
e/ \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
a) x2 - 5x + 5y - y2
= ( x2 - y2 ) - ( 5x - 5y )
= ( x - y )( x + y ) - 5( x - y )
= ( x - y )( x + y - 5 )
b) 3x2 - 6xy + 3y2 - 12z2
= 3( x2 - 2xy + y2 - 4z2 )
= 3[( x2 - 2xy + y2 ) - 4z2 ]
= 3[( x - y )2 - 4z2 ]
= 3( x - y - 2z )( x - y + 2z )
c) x2 - 2xy + y2 - xz - yz
= ( x2 - 2xy + y2 ) - ( xz - yz )
= ( x - y )2 - z( x - y )
= ( x - y )( x - y - z )
d) x2 - x + 2y - 4y2
= ( x2 - 4y2 ) - ( x - 2y )
= ( x - 2y )( x + 2y ) - ( x - 2y )
= ( x - 2y )(x + 2y - 1 )
e) x6 - y6
= ( x3 )2 - ( y3 )2
= ( x3 - y3 )( x3 + y3 )
= ( x - y )( x2 + xy + y2 )( x + y )( x2 - xy + y2 )
Chúc bạn học tốt
Dùng hằng đẳng thức là xong
a, \(\left(x+y\right)^3-x^3-y^3=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3x^2y+3xy^2=3xy\left(x+y\right)\)
b, \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)
\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)
Tham khảo nhé~
a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
6 x 2 y – 12 x y 2 = 6xy.x – 6xy.2y = 6xy(x – 2y)
Đáp án cần chọn là: A