Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
h ) \(9x^2y^2+6xy^2+y^2-1\)
\(=y^2\left(9x^2+6x+1\right)-1\)
\(=y^2\left(3x+1\right)^2-1\)
\(=\left[y\left(3x+1\right)\right]^2-1\)
\(=\left(3xy+y\right)^2-1\)
\(=\left(3xy+y-1\right)\left(3xy+y+1\right)\)
i ) \(x^2-x-2=x^2-x+\dfrac{1}{4}-\dfrac{9}{4}=\left(x-\dfrac{1}{2}\right)^2-\left(\dfrac{3}{2}\right)^2=\left(x-\dfrac{1}{2}-\dfrac{3}{2}\right)\left(x-\dfrac{1}{2}+\dfrac{3}{2}\right)=\left(x-2\right)\left(x+1\right)\)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
Bài giải:
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
\(x^3+8y^3+2xy^2+x^2y\)
\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)
\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)
a, \(9x^3y^2-15x^2y^3=3x^2y^2\cdot\left(3x-5y\right)\)
b,\(25x^2-49y^2=\left(5x\right)^2-\left(7y\right)^2\)
\(=\left(5x-7y\right)\cdot\left(5x+7y\right)\)
c,\(x^2y-xy^2-7x+7y=\left(x^2y-xy^2\right)-\left(7x-7y\right)\)
\(=xy\left(x-y\right)-7\left(x-y\right)\)
,\(=\left(x-y\right)\cdot\left(xy-7\right)\)
d, \(x^2-2xy+y^2-9z^2=\left(x^2-2xy+y^2\right)-9z^2\)
\(=\left(x-y\right)^2-9z^2\)
\(=\left(x-y+3z\right)\cdot\left(x-y-3z\right)\)
f) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-4\right)\left(x^2-1\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
48. Phân tích các đa thức sau thành nhân tử:
a) x2 + 4x – y2 + 4; b) 3x2 + 6xy + 3y2 – 3z2;
c) x2 – 2xy + y2 – z2 + 2zt – t2.
Bài giải:
a) x2 + 4x – y2 + 4 = (x2 + 4x + 4) - y2
= (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2 = 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2] = 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2 = (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2
= [(x – y) – (z – t)] . [(x – y) + (z – t)]
= (x – y – z + t)(x – y + z – t)
\(a.=x^3+3x^2y+3x^2y+9xy^2+3xy^2+9y^3\)
\(=x^2\left(x+3y\right)+3xy\left(x+3y\right)+3y^2\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x^2+3xy+3y^2\right).\)
\(b.=9x^3+3x^2y+9x^2y+3xy^2+3xy^2+y^3\)
\(=3x^2\left(3x+y\right)+3xy\left(3x+y\right)+y^2\left(3x+y\right)\)
\(=\left(3x^2+3xy+y^2\right)\left(3x+y\right)\).
k) \(x^3-x+3x^2+3xt^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
h) \(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
a) \(g\left(x,y\right)=x^2-10xy+9y^2=x^2-xy-9xy+9y^2\)
\(=x\left(x-y\right)-9y\left(x-y\right)=\left(x-y\right)\left(x-9y\right)\).
b )\(f\left(x,y\right)=x^6+x^4+x^2y^2+y^4-y^6\)
\(=x^6-y^6+x^4+x^2y^2+y^4\)
\(=\left(x^3\right)^2-\left(y^3\right)^2+\left(x^4+2x^2y^2+y^4\right)-x^2y^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)+\left(x^2+y^2\right)^2-\left(xy\right)^2\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)\)
\(=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left[\left(x-y\right)\left(x+y\right)+1\right]\)
\(=\left(x^2+xy+y^2\right)\left(x^2-2y+y^2\right)\left(x^2-y^2+1\right)\)
Vậy \(f\left(x,y\right)=\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\left(x^2-y^2+1\right)\)
g) x2 - 2xy + y2 - z2
= ( x - y )2 - z2
= ( x - y + z ) ( x - y - z )
h) 9x2y2 + 6xy2 + y2 - 1
= ( 3xy + y )2 - 1
= ( 3xy + y - 1 ) ( 3xy + y + 1 )
i ) x2 - x - 2
= x2 - 2x + x - 2
= x ( x - 2 ) + ( x - 2 )
= ( x - 2 ) ( x + 1 )