\(x^3+2x^2y+xy^2-9x\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Bài giải:

a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)

= x[(x2 + 2xy + y2) – 9]

= x[(x + y)2 – 32]

= x(x + y – 3)(x + y + 3)

b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)

= 2(x – y) – (x – y)2

= (x – y)[2 – (x – y)]

= (x – y)(2 – x + y)

c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).

11 tháng 10 2017

a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)

= x[(x2 + 2xy + y2) – 9]

= x[(x + y)2 – 32]

= x(x + y – 3)(x + y + 3)

b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)

= 2(x – y) – (x – y)2

= (x – y)[2 – (x – y)]

= (x – y)(2 – x + y)

c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).



Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

23 tháng 8 2019

k) \(x^3-x+3x^2+3xt^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

23 tháng 8 2019

h) \(a^3-a^2x-ay+xy\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a^2-y\right)\left(a-x\right)\)

12 tháng 8 2020

a) 3( x - y ) - 5x( y - x )

= 3( x - y ) - 5x[ -( x - y ) ]

= 3( x - y ) + 5x( x - y )

= ( 3 + 5x )( x - y )

b) x3 + 2x2y + xy2 - 9x

= x( x2 + 2xy + y2 - 9 )

= x[ ( x + y )2 - 32 ]

= x( x + y - 3 )( x + y + 3 )

c) 14x2y - 21xy2 + 28x2y2

= 7xy( 2x - 3y + 4xy )

12 tháng 8 2020

                                              Bài giải

\(a,\text{ }3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

\(b,\text{ }x^3+2x^2y+xy^2-9x\)

\(=x\left(x^2+2xy+y^2-9\right)\)

\(=x\left[\left(x+y\right)^2-3^2\right]\)

\(=x\left(x+y+3\right)\left(x+y-3\right)\)

\(c,\text{ }14x^2y-21xy^2+28x^2y\)

\(=7xy\left(2x-3y+4x\right)\)

\(=7xy\left(6x-3y\right)\)

20 tháng 4 2017

Bài giải:

a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2

b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]

= 2[(x + 1)2 – y2]

= 2(x + 1 – y)(x + 1 + y)

c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2

= (4 – x + y)(4 + x – y)

9 tháng 10 2017

a) \(x^3 - 2x^2 + x\) \(= x(x^2 - 2x + 1)\)

\(= x (x - 1 )^2\)

b) \(2x^2 + 4x + 2 - 2y^2\) \(= 2(x^2 + 2x + 1 - y^2)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1^2\right)-y^2\right]\)

\(= 2 (x+1-y) (x+1+y)\)

c) \(2xy - x^2 - y^2 + 16\) \(= - (x^2 - 2xy + y^2 - 4^2)\)

\(= - [(x^2 - 2xy + y^2) - 4^2]\)

\(= - [(x-y)^2 - 4^2 ]\)

\(= - (x - y - 4) (x- y + 4)\)

2 tháng 9 2018

\(x^3+8y^3+2xy^2+x^2y\)

\(=x^3+2x^2y-x^2y-2xy^2+4xy^2+8y^3\)

\(=x^2\left(x+2y\right)-xy\left(x+2y\right)+4y^2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x^2-xy+4y^2\right)\)

\(\left(a\right)\left(x^2+x\right)^2+9x^2+9x+14\)

\(\text{ Phân tích thành nhân tử}\)

\(\left(x^2+x+2\right)\left(x^2+x+7\right)\)

\(\left(b\right)x^2+2xy+y^2+2x-2y-3\)

\(\text{ Phân tích thành nhân tử}\)

\(y^2+2xy-3y+x^2+2x-3\)

Xong rùi đấy !

1 tháng 8 2018

x2+y2-x2y2+xy-x-y=x2-x2y2+y2-y-x+xy

                            =x(1-y2)+y(y-1)-x(1-y)

                            =x2(y-1)(y+1)+y(y-1)+x(y-1)

                           =-x2(y-1)(y+1)+y(y-1)+x(y-1)

                           =(y-1)(-x2(y+1)+y+x)

1 tháng 8 2018

f)    x4+2x2-4x-4=(x3.x+x3.2)-(2x.2+2.2)

                          =x3(x+2)-2(x+2)

                            =(x3-2)(x+2)

29 tháng 6 2018

\(1\hept{\begin{cases}6x^2-8x+3x-4\\2x\left(3x-4\right)+\left(3x-4\right)\\\left(3x-4\right)\left(2x+1\right)\end{cases}}\)

\(2\hept{\begin{cases}7x^2-7xy-5x+5y+6xy\\7x\left(x-y\right)-5\left(x-y\right)+\frac{6xy\left(x-y\right)}{\left(x-y\right)}\\\left(x-y\right)\left(7x-5+\frac{6xy}{\left(x-y\right)}\right)\end{cases}}\)

\(3\hept{\begin{cases}5x\left(x-y\right)-15\left(x-y\right)\\\left(x-y\right)\left(5x-15\right)\end{cases}}\)

\(4,,2x^2+x=x\left(2x+1\right)\)

\(5\hept{\begin{cases}x^3-4x-3x^2+12\\x\left(x^2-4\right)-3\left(x^2-4\right)\\\left(x+2\right)\left(x-2\right)\left(x-3\right)\end{cases}}\)

\(6\hept{\begin{cases}2x+2y+x^2-y^2\\2\left(x+y\right)+\left(x+y\right)\left(x-y\right)\\\left(x+y\right)\left(2+x-y\right)\end{cases}}\)

\(7\hept{\begin{cases}\left(x^2y-2xy\right)-\left(xy-2y\right)+\left(xy-y\right)\\xy\left(x-2\right)-y\left(x-2\right)+y\left(x-1\right)\\y\left(X-2\right)\left(x-1\right)+y\left(x-1\right)\end{cases}}\Leftrightarrow y\left(x-1\right)\left(x-2+1\right)\)

\(8\hept{\begin{cases}x\left(2-y\right)+z\left(2-y\right)\\\left(2-y\right)\left(x+1\right)\end{cases}}\)

16 tháng 9 2018

\(2x^2+x\)

\(=x\left(2x+1\right)\)

.

hk 

tốt

13 tháng 7 2018

\(x^4-2x^2y^2+y^4-1=0\Leftrightarrow\left(x^2-y^2\right)^2-1=0\Leftrightarrow\left(x^2-y^2-1\right).\left(x^2-y^2+1\right)=0\\ \)

\(x^2+2xy+2x+2y+y^2+1=0\Leftrightarrow\left(x+y+1\right)^2=0\)