Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Leftrightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)
Vậy x = 3/4 ; y = 2/5 ; z = -7/20
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
Ta có: \(\left|x-\frac{3}{4}\right|;\left|\frac{2}{5}-y\right|;\left|x-y+z\right|\ge0\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\)
Mà \(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\Rightarrow z=\frac{-7}{20}\end{cases}}\)
a: Vì x/3=y/3 nên x=y
mà x+y=10
nên x=y=10/2=5
b: \(=\left(4+\dfrac{3}{4}-\dfrac{3}{4}\right)+\left(\dfrac{5}{19}+\dfrac{14}{19}\right)+1.5=5.5+1=6.5\)
c: \(=9\cdot\dfrac{1}{3}-7+\left(-125\right):5=3-7-25=-29\)
a)
Ta có : \(\left|x+\frac{19}{5}\right|\ge0\) với mọi x
\(\left|y+\frac{1890}{1975}\right|\ge0\) với mọi x
\(\left|z-2014\right|\ge0\) với mọi x
\(\Rightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2014\right|\ge0\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2014\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1975}\right|=0\\\left|z-2014\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2014=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2014\end{cases}}\)
b) Cx tương tự câu trên thôi bạn
Ta có : \(\left|x-\frac{9}{2}\right|\ge0\) với mọi x
\(\left|y+\frac{4}{3}\right|\ge0\) với mọi x
\(\left|z+\frac{7}{2}\right|\ge0\) với mọi x
\(\Rightarrow\left|x-\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\) với mọi x
Mà \(\left|x-\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\le0\)
\(\Rightarrow\hept{\begin{cases}\left|x-\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-\frac{9}{2}=0\\y+\frac{4}{3}=0\\z+\frac{7}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{9}{2}\\y=-\frac{4}{3}\\z=-\frac{7}{2}\end{cases}}\)
Ta có:\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|1,5-y\right|\ge0\\\left|3-z\right|\ge0\end{cases}\Rightarrow\left|x-2\right|+\left|1,5-y\right|+\left|3-z\right|\ge0}\)
Để \(\left|x-2\right|+\left|1,5-y\right|+\left|3-z\right|=0\) thì \(\hept{\begin{cases}\left|x-2\right|=0\\\left|1,5-y\right|=0\\\left|3-z\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=1,5\\z=3\end{cases}}}\)
Vì |x-2| ; |1,5-y| ; |3-z| đều >= 0 nên VT >= 0
=> VT= 0 <=> x-2=0;1,5-y=0;3-z=0
<=> x=2;y=1,5;z=3