Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) \(3,5+\sqrt{\frac{49}{25}}-\sqrt{0,36}\)
\(=3,5+\sqrt{1,96}-\sqrt{0,36}\)
\(=3,5+1,4-0,6\)
\(=4,9-0,6\)
\(=4,3.\)
Câu 2:
a) \(\frac{4}{9}:\left(x+0,4\right)=\frac{2}{3}\)
\(\Rightarrow\left(x+0,4\right)=\frac{4}{9}:\frac{2}{3}\)
\(\Rightarrow x+0,4=\frac{2}{3}\)
\(\Rightarrow x+\frac{2}{5}=\frac{2}{3}\)
\(\Rightarrow x=\frac{2}{3}-\frac{2}{5}\)
\(\Rightarrow x=\frac{4}{15}\)
Vậy \(x=\frac{4}{15}.\)
Bài 3:
Ta có: \(4x=5y.\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{4}\) và \(x+y=18.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{5}=\frac{y}{4}=\frac{x+y}{5+4}=\frac{18}{9}=2.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\Rightarrow x=2.5=10\\\frac{y}{4}=2\Rightarrow y=2.4=8\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(10;8\right).\)
Chúc bạn học tốt!
a) Giải:
Ta có: \(a,b,c>0\Rightarrow a+b+c>0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{1}{3}\)
Bài 1:
a)
\((\frac{3}{5})^2-[\frac{1}{3}:3-\sqrt{16}.(\frac{1}{2})^2]-(10.12-2014)^0\)
\(=\frac{9}{25}-(\frac{1}{9}-1)-1\)
\(=\frac{9}{25}-\frac{1}{9}=\frac{56}{225}\)
b)
\(|-\frac{100}{123}|:(\frac{3}{4}+\frac{7}{12})+\frac{23}{123}:(\frac{9}{5}-\frac{7}{15})\)
\(=\frac{100}{123}:\frac{4}{3}+\frac{23}{123}:\frac{4}{3}=(\frac{100}{123}+\frac{23}{123}):\frac{4}{3}=1:\frac{4}{3}=\frac{3}{4}\)
c)
\(\frac{(-5)^{32}.20^{43}}{(-8)^{29}.125^{25}}=\frac{5^{32}.(2^2.5)^{43}}{(-2)^{3.29}.(5^3)^{25}}=\frac{5^{32}.2^{86}.5^{43}}{-2^{87}.5^{75}}\)
\(=\frac{5^{32+43}.2^{86}}{-2^{87}.5^{75}}=\frac{5^{75}.2^{86}}{-2^{87}.5^{75}}=-\frac{1}{2}\)
Bài 2:
a)
\(\frac{2}{3}-(\frac{3}{4}-x)=\sqrt{\frac{1}{9}}=\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\)
b)
\((\frac{1}{2}-x)^2=(-2)^2=2^2\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}-x=-2\\ \frac{1}{2}-x=2\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=\frac{-3}{2}\end{matrix}\right.\)
c)
\(|3x+\frac{1}{2}|-\frac{2}{3}=1\)
\(|3x+\frac{1}{2}|=\frac{2}{3}+1=\frac{5}{3}\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{1}{2}=\frac{5}{3}\\ 3x+\frac{1}{2}=-\frac{5}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{7}{18}\\ x=\frac{-13}{18}\end{matrix}\right.\)
d)
\(3^{2x+1}=81=3^4\)
\(\Rightarrow 2x+1=4\Rightarrow x=\frac{3}{2}\)
a)\(\left|x+\frac{1}{5}\right|-4=-2\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow x+\frac{1}{5}=2\) hoặc \(-2\)
Xét \(x+\frac{1}{5}=2\Leftrightarrow x=\frac{9}{5}\)
Xét \(x+\frac{1}{5}=-2\Leftrightarrow x=-\frac{11}{5}\)
Bài 1
\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)
\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)
\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)
\(=\frac{9}{25}+\frac{8}{9}-1\)
\(=\frac{56}{225}\)
\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)
\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)
\(=1:\frac{4}{3}=\frac{3}{4}\)
Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v
\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)
\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)
\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)
\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)
\(=-\frac{1}{2}\)
a: Vì x/3=y/3 nên x=y
mà x+y=10
nên x=y=10/2=5
b: \(=\left(4+\dfrac{3}{4}-\dfrac{3}{4}\right)+\left(\dfrac{5}{19}+\dfrac{14}{19}\right)+1.5=5.5+1=6.5\)
c: \(=9\cdot\dfrac{1}{3}-7+\left(-125\right):5=3-7-25=-29\)