Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên nhớ các bài dạng dãy số này, sau này sẽ cần dùng rất nhiều:
Ta có: \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)
\(2A=2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\)
\(2A-A=\left(2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)
\(A=2+\left(1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\frac{1}{2^{2014}}\)
\(A=2-\frac{1}{2^{2014}}\)
Ta có:\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)
\(\Leftrightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2014}}\right)\)
\(=2-\frac{1}{2^{2014}}=\frac{2^{2015}-1}{2^{2014}}\)
Vậy \(A=\frac{2^{2015}-1}{2^{2014}}\)
Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
=>\(A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2017}}\)
\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^3}-\frac{1}{2^3}\right)+...+\left(\frac{1}{2^{2016}}-\frac{1}{2^{2016}}\right)-\frac{1}{2^{2017}}\)
\(A=1-\frac{1}{2^{2017}}\)
Vậy: \(A=1-\frac{1}{2^{2017}}\)
a. \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow2A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{2014}}\right):2=\frac{1}{2}-\frac{1}{3^{2014}.2}=\frac{3^{2014}-1}{3^{2014}.2}\)
b.\(B=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}\)
\(\Rightarrow2B=1+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)
\(\Rightarrow2B-B=1-\frac{1}{2^{2014}}\)
\(\Rightarrow B=1-\frac{1}{2^{2014}}\)
Ta có :
A=a3+2a2-1/a3+2a2+2a+1
A=a3+a2+a2-1/a3+a2+a2+2a+1=(a3+a2)+(a2-1)/(a3+a2)+(a2+2a+1)
A=a2(a+1)(a2-1)/a2(a+1)(a+1)2
=(a+1)(a2+a-1)/(a+1)(a2+a+1)
A=a2+a-1/a2+a+1
chúc bạn học tốt có thời gian mình giải nốt cho
mình mới học lớp 5 nên chỉ làm câu a
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2+a-1}{a^2+a+1}\)
b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)
\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)
\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=4026\cdot\dfrac{5}{6}=3355\)
Mình chỉ gợi ý thôi!
Trên tử xét thành số liền sau nó trừ 1, rồi tách ra rồi rút gọn là xong!!!
VD: \(\frac{1}{2!}=\frac{2-1}{2!}=\frac{2}{2!}-\frac{1}{2!}=1-\frac{1}{2!}\)
\(A=\frac{2^{15}.3^{12}-3^{11}.2^{17}}{2^{15}.3^{11}+3^{11}.2^{17}}\)
\(A=\frac{2^{15}.3^{11}.\left(3-2^2\right)}{2^{15}.3^{11}.\left(1+2^2\right)}\)
\(A=\frac{3-2^2}{1+2^2}\)
\(A=\frac{-1}{5}\)
=> 2S=........( cộng thêm 1 vào mỗi mũ)
=>2S-S=........( trừ những phần giống nhau cho nhau, còn 2 mũ 2015-2 )
=>S=2 mũ 2015-2
\(S=2+2^2+2^3+...+2^{2013}+2^{2014}\)
\(2S=2^2+2^3+2^4+...+2^{2014}+2^{2015}\)
\(2S-S=\left(2^2+2^3+...+2^{2014}+2^{2015}\right)-\left(2+2^2+2^3+...+2^{2014}\right)\)
\(S=2^{2015}-2\)
Ủng hộ mk nha !!! ^_^