Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow2A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{2014}}\right):2=\frac{1}{2}-\frac{1}{3^{2014}.2}=\frac{3^{2014}-1}{3^{2014}.2}\)
b.\(B=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}\)
\(\Rightarrow2B=1+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)
\(\Rightarrow2B-B=1-\frac{1}{2^{2014}}\)
\(\Rightarrow B=1-\frac{1}{2^{2014}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\right)\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(B=1-\frac{1}{2^{2012}}\)
\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)
\(\Rightarrow A=2-\frac{1}{2^{2012}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)
\(A=2-\frac{1}{2^{2012}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
Nên \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
Suy ra \(2A-A=2-\frac{1}{2^{2012}}\)hay \(A=2-\frac{1}{2^{2012}}\)
Vậy \(A=2-\frac{1}{2^{2012}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
=>\(A-\frac{1}{2}A=\left(1+\frac{1}{2}+..+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)\)
=>\(\frac{1}{2}A=1-\frac{1}{2^{2013}}\)
=>\(A=2-\frac{1}{2^{2012}}\)
Cô mình chữa bài này rồi nên bạn cứ yên tâm
\(A=1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Leftrightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
Đặt \(I=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2I=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(2I=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2I-I=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2011}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(I=1-\frac{1}{1^{2012}}\)
\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)
\(\Rightarrow A=2-\frac{1}{2^{2012}}\)
Vậy \(A=2-\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+...+\frac{2}{2^{2011}}\)
\(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
Ta có: \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)
=> \(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)
=> \(2A=2+1+...+\frac{2}{2^{2011}}\)
=> \(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)
=> \(A=2-\frac{1}{2012}\)
\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)
\(A=\frac{1+\left(1+\frac{2016}{2}\right)+\left(1+\frac{2015}{3}\right)+...+\left(1+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)
\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)
\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)
\(A=2018\)
Ta có :
\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)
\(A=\frac{\left(\frac{2017}{1}-1-1-...-1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)
\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)
\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)
\(A=2018\)
Vậy \(A=2018\)
Chúc bạn học tốt ~
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
mk nhanh nhat nhe
Bạn nên nhớ các bài dạng dãy số này, sau này sẽ cần dùng rất nhiều:
Ta có: \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)
\(2A=2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\)
\(2A-A=\left(2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)
\(A=2+\left(1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\frac{1}{2^{2014}}\)
\(A=2-\frac{1}{2^{2014}}\)
Ta có:\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)
\(\Leftrightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2014}}\right)\)
\(=2-\frac{1}{2^{2014}}=\frac{2^{2015}-1}{2^{2014}}\)
Vậy \(A=\frac{2^{2015}-1}{2^{2014}}\)