K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

ta có: n2 + 5n - 13 \(⋮\) n +5

=> n . n + 5n-13  \(⋮\) n +5

=>n.(n+5)+5.(n+5)-5n-38 \(⋮\) n +5

=>5n-38  \(⋮\) n +5

=> 5(n+5) - 63  \(⋮\) n +5

=> n + 5 \(\in\)Ư(63) = { -63 ; -21;-9;-7;-3;-1;1;3;7;9;21;63}

=> n \(\in\){-68;-26;-14;-12;-8;-6;-4;-2;2;4;16;58}

2 tháng 2 2017

n=-6;-4;-18;8

Đúng 100%

19 tháng 7 2017

b/n bang 2      c/n bang 2

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

12 tháng 11 2017

2n+13 chia hết cho 2n+5

=>[( 2n+13)-(2n+5)] chia hết cho 2n+5

=>8 chia hết cho 2n+5=>2n+5 la uoc của 8

U(8)={1;2;4;8}

còn lại bạn tự giải quyết nha

12 tháng 11 2017

bạn nguyen ngoc vinh cho mình biết tại sao lại trừ không ạ

13 tháng 10 2017

Phản chứng :

giả sử n = 2 , => n5 - 1 = 25 - 1 = 31 ko chia hết cho 4 

Vậy điều cần chứng minh là sai

16 tháng 10 2017

mình cám ơn nhé
 

18 tháng 12 2017

mình đang cần bài này giúp mình đi

18 tháng 12 2017

a, n+5 chia hết cho n-2

=>n-2+7 chia hết cho n-2

=>7 chia hết cho n-2

=>n-2 thuộc Ư(7)={1;-1;7;-7}

=>n thuộc {3;2;9;-5}

b, 2n+1 chia hết cho n-5

=>2n-10+11 chia hết cho n-5

=>2(n-5)+11 chia hết cho n-5

=>11 chia hết cho n-5

=>n-5 thuộc Ư(11)={1;-1;11;-11}

=>n thuộc {6;4;16;-6}

c,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 thuộc Ư(13)={1;-1;13;-13}

=>n thuộc {-2;-4;10;-16}

d, n2+3 chia hết cho n-1

=>n2-n+n+3chia hết cho n-1

=>n(n-1)+n+3 chia hết cho n-3

=>n+3 chia hết cho n-3

=>n-3+6 chia hết cho n-3

=>6 chia hết cho n-3

=>n-3 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}

=>n thuộc {4;2;5;1;6;0;9;-3}