K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEHB vuông tại E và ΔDHC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB~ΔDHC

b: Xét ΔABC có

BD,CE là các đường cao

DB cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét ΔBFH vuông tại Fvà ΔBDC vuông tại D có

\(\widehat{FBH}\) chung

Do đó: ΔBFH~ΔBDC

=>\(\dfrac{BF}{BD}=\dfrac{BH}{BC}\)

=>\(BF\cdot BC=BH\cdot BD\)

c: Xét ΔCFH vuông tại F và ΔCEB vuông tại E có

\(\widehat{FCH}\) chung

Do đó: ΔCFH~ΔCEB

=>\(\dfrac{CF}{CE}=\dfrac{CH}{CB}\)

=>\(CF\cdot CB=CH\cdot CE\)

\(BH\cdot BD+CH\cdot CE\)

\(=BF\cdot BC+CF\cdot BC=BC\left(BF+CF\right)=BC^2\)

6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm

11 tháng 11 2021

Câu 4: D

a: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

d: Ta có: \(x^2-2x+\left|y+1\right|+5\)

\(=\left(x-1\right)^2+\left|y+1\right|+4\ge4\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-1

11 tháng 3 2022

bài nào

11 tháng 3 2022

bài ở đou

1 tháng 12 2019

GIải hộ mình bài 4 câu a nhé <3

1 tháng 12 2019

không biết bó tay

Bài 5: 

a: Ta có: \(x^2-8x+17\)

\(=x^2-8x+16+1\)

\(=\left(x-4\right)^2+1>0\forall x\)

b: Ta có: \(4x^2-12x+13\)

\(=4x^2-12x+9+4\)

\(=\left(2x-3\right)^2+4>0\forall x\)

c: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

30 tháng 9 2021

Bài 5: 

a: Ta có: x2−8x+17x2−8x+17

=x2−8x+16+1=x2−8x+16+1

=(x−4)2+1>0∀x=(x−4)2+1>0∀x

b: Ta có: 4x2−12x+134x2−12x+13

=4x2−12x+9+4=4x2−12x+9+4

=(2x−3)2+4>0∀x=(2x−3)2+4>0∀x

c: Ta có: x2−x+1x2−x+1

=x2−2⋅x⋅12+14+34=x2−2⋅x⋅12+14+34

=(x−12)2+34>0∀x

1: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-3x^2+27x-27-x^3+27+9x^2+18x+9=15\)

\(\Leftrightarrow45x=6\)

hay \(x=\dfrac{2}{15}\)

2: Ta có: \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow-25x=11\)

hay \(x=-\dfrac{11}{25}\)

3: Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-5\right)\left(x+5\right)=264\)

\(\Leftrightarrow x^3+64-x^3+25x=264\)

\(\Leftrightarrow25x=200\)

hay x=8

4: Ta có: \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)+6\left(x-2\right)\left(x+2\right)=60\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+8+6x^2-24=60\)

\(\Leftrightarrow12x=84\)

hay x=7

6: Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=64\)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=64\)

\(\Leftrightarrow12x^2=48\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

7: Ta có: \(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)

\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)

\(\Leftrightarrow-10x=-10\)

hay x=1

8: Ta có: \(\left(4x+1\right)^2-\left(2x+3\right)^2+5\left(x+2\right)^2+3\left(x-2\right)\left(x+2\right)=500\)

\(\Leftrightarrow16x^2+8x+1-4x^2-12x-9+5x^2+20x+20+3x^2-12=500\)

\(\Leftrightarrow20x^2+16x-500=0\)

\(\text{Δ}=16^2-4\cdot20\cdot\left(-500\right)=40256\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-16-8\sqrt{629}}{40}=\dfrac{-2-\sqrt{629}}{5}\\x_2=\dfrac{-16+8\sqrt{629}}{40}=\dfrac{-2+\sqrt{629}}{5}\end{matrix}\right.\)

9: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x=28\)

hay x=7