Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge0;x\ne1\\ 1,P=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}+5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\sqrt{x}-1}\\ 2,P< 0\Leftrightarrow\sqrt{x}-1< 0\left(2>0\right)\\ \Leftrightarrow\sqrt{x}< 1\Leftrightarrow0\le x< 1\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a\cdot0+b=-2\\-3a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\)
\(1,ĐK:x^2-1\ge0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ 2,ĐK:x\ge2\\ 3,ĐK:\left(x-1\right)\left(x-3\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\\ 4,ĐK:x^2-4x-3\ge0\\ \Leftrightarrow\left(x-2+\sqrt{7}\right)\left(x-2-\sqrt{7}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}x\le2-\sqrt{7}\\x\ge2+\sqrt{7}\end{matrix}\right.\)
a: Thay x=16 vào A, ta được:
\(A=\dfrac{4}{4-3}=4\)
b: Ta có: M=A-B
\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{7}{\sqrt{x}+1}+\dfrac{12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+\sqrt{x}-7\sqrt{x}+21+12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-6\sqrt{x}+33}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
1: Ta có: \(\sqrt{81x^2}=6\)
\(\Leftrightarrow\left|9x\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}9x=6\\9x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2: Ta có: \(\sqrt{4x^2}+\sqrt{9x^2}=10\)
\(\Leftrightarrow2\left|x\right|+3\left|x\right|=10\)
\(\Leftrightarrow\left|x\right|=2\)
hay \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
3: Ta có: \(\sqrt{36x^2}-4=0\)
\(\Leftrightarrow\left|6x\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=4\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Help me!!! :(