K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

\(ĐK:x\ge0;x\ne1\\ 1,P=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}+5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\sqrt{x}-1}\\ 2,P< 0\Leftrightarrow\sqrt{x}-1< 0\left(2>0\right)\\ \Leftrightarrow\sqrt{x}< 1\Leftrightarrow0\le x< 1\)

16 tháng 12 2021

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a\cdot0+b=-2\\-3a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\)

28 tháng 10 2021

\(1,ĐK:x^2-1\ge0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ 2,ĐK:x\ge2\\ 3,ĐK:\left(x-1\right)\left(x-3\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\\ 4,ĐK:x^2-4x-3\ge0\\ \Leftrightarrow\left(x-2+\sqrt{7}\right)\left(x-2-\sqrt{7}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}x\le2-\sqrt{7}\\x\ge2+\sqrt{7}\end{matrix}\right.\)

28 tháng 10 2021

Tks bạn

17 tháng 8 2021

A= -x+\(4\sqrt{x}\)+5

A= -x+\(4\sqrt{x}\)-4+9

A= -(x-\(4\sqrt{x}\)+4)+9

A=-(\(\sqrt{x}\)-2)2 +9 ≤9

Dấu "=" xẩy ra khi -(\(\sqrt{x}\)-2)=0 

=> x=4

Vậy Max A=9 khi x=4

17 tháng 8 2021

B=15-x+6\(\sqrt{x}\)

B= -x+6\(\sqrt{x}\)-9+24

B=-(\(\sqrt{x}\)-3)2+24

Dấu "=" xẫy ra khi x=9

Vậy Max B = 24 khi x= 9

a: Ta có: \(A=\dfrac{2x-3\sqrt{x}-14}{x-7\sqrt{x}+12}-\dfrac{\sqrt{x}+4}{\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{\sqrt{x}-4}\)

\(=\dfrac{2x-3\sqrt{x}-14-x+16-x+4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\)

Ta có: \(B=\dfrac{x-2\sqrt{x}+1}{x-4\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)

b: Ta có: M=A:B

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(=\dfrac{1}{\sqrt{x}-4}\)

20 tháng 10 2021

Bài 2: 

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{x}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

8 tháng 1 2022

hình đây nha mnundefined

Chọn D