Hiện tượng cầu vồng xuất hiện sau cơn mưa được giải thích chủ yếu dựa vào hiện tượng
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

Ta chọn phương án C là bởi vì : Khi kích thích hơi Na thì nó sẽ phát ra photon (sẽ có bước sóng nằm trong vùng ánh sáng nhìn thấy). Khi qua máy quang phổ sẽ cho ta quang phổ vạch phát xạ. Nó gồm các vạch sáng đơn lẻ, ngăn cách nhau bằng những khoảng tối. Như vậy ta có thể thấy là năng lượng bên trong Na là các giá trị không liên tục rồi nha

4 tháng 6 2016

Ta có \(\dfrac{i_1}{i_2}=\dfrac{4}{5}\)

Nên chọn \(\begin{cases}i_1=4i \\ i_2=5i \end{cases}\) \(\Rightarrow i_{\equiv }=20i\)

Tại vị trí \(x_1= 0,5i_1=2i; x_2=12,5i_1=50i\) 

Nên số vân trùng thỏa mãn: \(2i < k.20i < 50i\)

Có 2 giá trị k thỏa mãn là: k = 1 hoặc k = 2.

Vậy có 2 vân trùng,

Chọn đáp án B.

27 tháng 1 2016

Vị trí vân sáng bậc 4 của ánh sáng đỏ: \(x_s^4 = 4. \frac{\lambda_d D}{a}\)

Tại vị trí này có vân sáng bậc \(k\) của ánh sáng có bước sóng \(\lambda\) tức là

 \(x_s^4 = x_s^k<=> 4\frac{\lambda_d D}{a}= k\frac{\lambda D}{a} \)

                <=>  \(\lambda = \frac{4\lambda_d}{k}.\ \ (1)\)

Mà bước sóng \(\lambda\) này thỏa mãn \(0,38 \mu m \leq \lambda \leq 0,76 \mu m.\)

              Thay (1) vào ta được \(0,38 \leq \frac{4\lambda_d}{k} \leq 0,76\)

                                        <=>  \( \frac{4\lambda_d }{0,76} \leq k \leq \frac{4\lambda_d}{0,38}\) 

                                        <=> \(\frac{4.0,76}{0,76} \leq k \leq \frac{4.0,76}{0,38}\)

                                        <=> \(4 \leq k \leq 8.\)

=> \(k = 4,5,6,7,8.\)(trong đó k = 4 chính là vân sáng bậc 4 của ánh sáng đỏ)

Vậy ngoài vân sáng bậc 4 của ánh sáng đỏ ra thì còn 4 vân sáng của các ánh sáng khác tại vị trí đó.

1 tháng 2 2016

Số vân sáng trong khoảng giữa hai vân sáng nằm ở hai đầu là 

\(N_s = 2[\frac{L}{2i}]+1=> \frac{L}{2i }= 10=> i = 2mm.\)

\(\lambda = \frac{ai}{D}= 0,6 \mu m.\)

30 tháng 4 2016

        \(\lambda_1\)(tím)\(=0,42\mu m\) , \(\lambda_2\) (lục) \(=0,56\mu m\) , \(\lambda_3\) (đỏ) \(=0,7\mu m\)

Vì giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 11 cực đại giao thoa của ánh sáng đỏ \(\Rightarrow k_{đỏ}=k_3=12\)

Từ BSCNN \(\Rightarrow k_1=k_{tím}=20\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 19 vân màu tím

  \(\Rightarrow k_{lục}=k_2=15\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 14 vân màu lục.

\(\rightarrow A\)

18 tháng 1 2016

Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là 

\(d_2-d_1 = (k+0,5)\lambda.\)

Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)

 

O
ongtho
Giáo viên
5 tháng 1 2016

dd12SS12xOM

M là vân sáng bậc 4 nên

 \(x_{s4} = 4i = 4 \frac{\lambda D}{a}.\)

Hiệu đường đi từ hai khe đến điểm M là 

\(d_2 -d_1 = \frac{a x}{D}= \frac{a}{D}4.\frac{\lambda D}{a}= 4 \lambda=2,4.10^{-6}m.\)

5 tháng 1 2016

Bài này đáp án là B

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

8 tháng 3 2016

1) i=2mm.            
Biết bề rộng miền giao thoa L=3cm=30mm, ta có:            
\(\frac{L}{2i}=7,5\) Phần nguyên n=7.            
Suy ra số vân sáng: \(N_1=2n+1=15\) vân;            
Số vân tối:      \(N_2=2\left(n+1\right)=16\)  vân.        
2) Khi thực hiện thí nghiệm trong môi trường nước, bước sóng ánh sáng là \(\lambda'=\frac{\lambda}{n}\), do đó khoảng vân bây giờ là : \(I'=\lambda'\frac{D}{a}=\frac{i}{n}=1,5mm\)
Ta có: \(\frac{L}{2i'}=10\). Suy ra số vân sáng:\(N'_1=2n+1=21\) vân            
                Số vân tối :               \(N'_2=2n=20\) vân.

4 tháng 6 2016
+ Khoảng vân: \(i=\frac{\lambda D}{a}=1,8\left(mm\right)\)
+ Xét tỉ số: \(\frac{x_M}{i}=3\) 
\(\Rightarrow\) Tại M là vân sáng bậc 3.
4 tháng 6 2016

 

Trong thí nghiệm Iâng về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng 0,6 μmμm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm một khoảng 5,4 mm có 

 

A.  vân sáng bậc 2

B. vân sáng bậc 4

C. vân sáng bậc 3 

D. vân sáng thứ 4