Hãy viết các tỉ số sau đây thành tỉ số của hai số nguyên:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\)

\(S=3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(S=3.\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(S=3.\frac{9}{20}=\frac{27}{20}\)

21 tháng 6 2016

2016-05-06_213811

21 tháng 6 2016

\(a.x+9=2\frac{1}{3}\)

    \(x=2\frac{1}{3}-9\)

    \(x=-\frac{20}{3}\)

\(b.\frac{-5}{2}.x=\frac{1}{10}\)

     \(x=\frac{1}{10}:\frac{-5}{2}\)

     \(x=-\frac{1}{25}\)

21 tháng 6 2016

a)

<=> x=\(\frac{7}{3}-9=-\frac{20}{3}\)

b)

<=> x=\(\frac{1}{10}:\frac{-5}{2}=-\frac{2}{25}\)

21 tháng 6 2016

\(a.\frac{2}{3}+\frac{5}{7}=\frac{14}{21}+\frac{15}{21}=\frac{19}{21}\)

\(b.\frac{3}{2}.\frac{4}{5}-\frac{1}{35}=\frac{6}{5}-\frac{1}{35}=\frac{42}{35}-\frac{1}{35}=\frac{41}{35}\)

\(c.\left(\frac{20}{3}-\frac{22}{5}\right):\frac{1}{15}=\left(\frac{100}{15}-\frac{66}{15}\right):\frac{1}{15}=\frac{34}{15}:\frac{1}{15}=\frac{34}{15}x15=34\)

21 tháng 6 2016

a) \(\frac{2}{3}+\frac{5}{7}=\frac{14}{21}+\frac{15}{21}=\frac{14+15}{21}=\frac{29}{21}\)

b)\(\frac{3}{2}.\frac{4}{5}-\frac{13}{5}=\frac{3.4}{2.5}-\frac{13}{5}=\frac{12}{10}-\frac{13}{5}=\frac{6}{5}-\frac{13}{5}=-\frac{7}{5}\)

c)\(\left(\frac{20}{3}-\frac{22}{5}\right):\frac{1}{15}=\left(\frac{100}{15}-\frac{66}{15}\right):\frac{1}{15}=\frac{44}{15}.15=44\)

13 tháng 5 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)

\(A=\frac{1}{1^2}+\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+.....+\frac{1}{50\times50}\)

\(A< \frac{1}{1}+\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{49\times50}\)

\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)

\(A< 2-\frac{1}{50}\)

\(2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

Chúc bạn học tốtok

 

13 tháng 5 2016

ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

=> 

5 tháng 5 2016

khocroikhocroikhocroi hu hu hu............................................... giup mình với

5 tháng 5 2016

\(A< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A< 1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{50}\)

\(A< 2-\frac{1}{50}< 2\)

Vậy A < 2 

31 tháng 7 2016

Hỏi đáp Toán

1 tháng 8 2016

A=\(\frac{3.7+9.28+15.42+21.56}{6.14+12.35+18.63+30.77}\)

\(\Rightarrow A=\frac{3.7.\left(1+3.4+5.6+7.8\right)}{6.7.\left(2+2.5+3.9+5.11\right)}\)

\(\Rightarrow A=\frac{1+3.4+5.6+7.8}{2.\left(2+2.5+3.9+5.11\right)}\)

\(\Rightarrow A=\frac{1+12+30+56}{2.\left(2+10+27+55\right)}\)

\(\Rightarrow A=\frac{99}{2.94}\)

\(\Rightarrow A=\frac{99}{188}\)

 

 

1 tháng 10 2016

Những tia trùng nhau là:MN;MP;MQ;NP;NQ

Không có tia nào trùng nhau

PN và PQ là tia đối nhau

tick nha!

1 tháng 10 2016

a) Xét riêng những tia cùng gốc M ta được những tia trùng nhau: MN,MP,MQ;

Những tia cùng gốc N ta được những tia trùng nhau: NP, NQ.

b) Trong các tia MN,NM,MP không có tia nào đối nhau.

c) Hai tia gốc P đối nhau là tia PQ và tia PN

hoặc hai tia gốc P đối nhau là tia PQ và tia PM

4 tháng 3 2017

Gọi \(ƯC\left(2a+3;a+2\right)\)\(d\)

\(\Rightarrow2a+3⋮d\) ; \(a+2⋮d\)

\(\Rightarrow2a+3⋮d\) ; \(2\left(a+2\right)⋮d\)

\(\Rightarrow2a+3⋮d\) ; \(2a+4⋮d\)

\(\Rightarrow2a+4-2a-3⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy phân số có dạng \(\dfrac{2a+3}{a+2}\) là phân số tối giản.

5 tháng 3 2017

Bn ơi sao2(a+2) lại chia hết cho d?????lolang

2 tháng 5 2017

Ta có :

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+.........+\dfrac{1}{50^2}\)

Ta thấy :

\(\dfrac{1}{1^2}=1\)

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(..............\)

\(\dfrac{1}{50^2}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..........+\dfrac{1}{49.50}\)

\(A< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A< 1+1-\dfrac{1}{50}\)

\(A< 2-\dfrac{1}{50}\)

\(\Rightarrow A< 2\rightarrowđpcm\)

2 tháng 5 2017

đpcm là gì vậy bạn