K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Vì F(x) là nguyên hàm của f(x) trên K nên (F(x))' = f(x). Vì C là hằng số nên (C)’ = 0.

Ta có:

(G(x))' = (F(x) + C)' = (F(x))' + (C)' = f(x) + 0 = f(x)

Vậy G(x) là một nguyên hàm của f(x).

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

26 tháng 3 2016

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1

 

29 tháng 4 2016

Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi m : \(m^2-2\left(x^3_0+x_0\right)m+y_0+x^2_0-x_0-2=0\)

           \(\Leftrightarrow\Delta'=\left(x^3_0+x_0\right)^2-\left(y_0+x^2_0-x_0-2\right)< 0\)

           \(\Leftrightarrow y_0>x^6_0+2x^4_0+x_0+2\)

Xét phương trình : \(2mx^3-x^2+\left(2m+1\right)x-m^2+2=x^6+2x^4+x+2\)

                       \(\Leftrightarrow m^2-2\left(x^3+x\right)m+\left(x^3+x\right)^2=0\)

                       \(\Leftrightarrow\left(x^3+x-m\right)^2=0\) (*)

Vì phương trình \(x^3+x-m=0\) luôn có nghiệm nên (*) luôn có nghiệm bội.

Vậy \(\left(C_m\right)\) luôn tiếp xúc với đường cong \(y=x^6+2x^4+x+2\)

3 tháng 5 2016
CÁch 1: G/s họ đường thằng trên luôn tiếp xúc với parabol cố định: y=ax^2+bx+c \:\:\:(a\neq 0)
Khi đó: ax^2+bx+c=2mx-m^2+2m+2 có nghiệm kép với mọi m
hay ax^2+x(b-2m)+c+m^2-2m-2=0 có nghiệm kép với mọi m
Cách 2: Gọi M(x_o;y_o) là các điểm mà họ đường thẳng trên không đi qua.
Hay y_o=2mx_o-m^2+2m+2 vô nghiệm ẩn m
\Leftrightarrow m^2-2m(x_o+1)+y_o-2=0 vô nghiệm ẩn m
\Leftrightarrow \Delta '=(x_o+1)^2-(y_o-2)<0 \\\Leftrightarrow x_o^2+2x_o+3<y_o
Xét đường biên: (P)y=x^2+2x+3
Lập phương trình hoành độ giao điểm ta được: (x-m)^2=0
Phương trình này luôn có 1 nghiệm kép nên (dm) luôn tiếp xúc (P)
29 tháng 4 2016

Vì ta chưa xác định được hình dạng của đường cong cố định nên ta sử dụng phương pháp đường biên của hình lồi

Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi \(\alpha\)

   \(2x_0\sin\alpha+2y_0\cos\alpha+4\sin\alpha+1=0\)

\(\Leftrightarrow\left(2x_0+4\right)\sin\alpha+2y_0\cos\alpha+1=0\) (*)

(*) vô nghiệm \(\Leftrightarrow\left(2x_0+4\right)^2+4y^2_0< 1\Leftrightarrow\left(x_0+2\right)^2+y_0^2< \frac{1}{4}\)

Xét đường tròn (C) tâm I(-2;0) và bán kính \(R=\frac{1}{2}\) , ta có :

\(d\left(I,\Delta_{\alpha}\right)=\frac{\left|-4\sin\alpha+2.0\cos\alpha+4\sin\alpha+1\right|}{\sqrt{4\sin^2\alpha+4\cos^2\alpha}}=\frac{1}{2}=R\Rightarrow\Delta_{\alpha}\) luôn tiếp với (C)

29 tháng 4 2016

Giả sử \(\left(C_m\right)\) luôn tiếp xúc với đường thẳng \(y=ax+b\), khi đó phương trình sau có nghiệm với mọi m :

    \(\begin{cases}\frac{\left(3m+1\right)x+m-m^2}{x+m}=ax+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)   \(\Leftrightarrow\begin{cases}3m+1-\frac{4m^2}{x+m}=a\left(x+m\right)am+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)

\(\Leftrightarrow\begin{cases}\frac{8m^2}{x+m}=am+3m+1-b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\frac{\left(am+3m+1-b\right)^2}{16m^2}=a\) với mọi m

\(\Leftrightarrow\left(a^2-10a+9\right)m^2+2\left(a+3\right)\left(1-b\right)m+\left(1-b\right)^2=0\) với mọi m

\(\Leftrightarrow\begin{cases}a^2-10a+9=0\\\left(a+3\right)\left(1-b\right)=0\\\left(1-b\right)^2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}a=1;a=9\\b=1\end{cases}\)

Vậy \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng \(y=x+1;y=9x+1\)

 

29 tháng 4 2016

Ta có \(y=\left(m+1\right)x+m\left(m+1\right)+\frac{m^3}{x-m}\) suy ra tiệm cận xiên của \(\left(C_m\right)\) là đường thẳng d có phương trình \(y=\left(m+1\right)x+m\left(m+1\right)\)

Giả sử d luôn tiếp xúc với Parabol (P) : \(y=ax^2+bx+c;\left(a\ne0\right)\) khi đó phương trình sau có nghiệm bội với mọi m :

   \(ax^2+bx+c=\left(m+1\right)x+m\left(m+1\right)\)

\(\Leftrightarrow ax^2+\left(b-m-1\right)x+c-m^2-m=0\)(*)

\(\Leftrightarrow\Delta=\left(m+1-b\right)^2-4a\left(c-m^2-m\right)=0\)

\(\Leftrightarrow\left(1+4a\right)m^2+2\left[\left(1-b\right)+2a\right]m+\left(1-b\right)^2-4ac=0\) với mọi m

\(\Leftrightarrow\begin{cases}1+4a=0\\\left(1-b\right)+2a=0\\\left(1-b\right)^2-4ac=0\end{cases}\)

\(\Leftrightarrow\begin{cases}a=-\frac{1}{4}\\b=\frac{1}{2}\\c=-\frac{1}{4}\end{cases}\)

\(\Rightarrow\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)

Vậy d luôn tiếp xúc với Parabol (P) \(y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)

29 tháng 4 2016

Giả sử \(M\left(x_0;y_0\right)\) là điểm mà d không đi qua, khi đó phương trình :

\(y_0=\left(m+1\right)x_0+m^2+m\Leftrightarrow m^2+\left(x_0+1\right)m+x_0-y_0=0\) vô nghiệm với mọi m

                                         \(\Leftrightarrow\Delta=\left(x_0+1\right)^2-4x_0+4y_0< 0\)

                                        \(\Leftrightarrow y_0< -\frac{1}{4}x_0^2+\frac{1}{2}x_0-\frac{1}{4}\)

Ta dễ dàng chứng minh được d luôn tiếp xúc với Parabol

\(\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)

26 tháng 3 2016

a) Ta có 

\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)

Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :

\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)

hay 

\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)

 

b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :

\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)

Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :

\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)

\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)

\(\Rightarrow lgc=\frac{1}{1-lga}\)

Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)