Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :
\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)
Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)
Mặt khác, ta lại có :
\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)
\(\Leftrightarrow2\log^2_23-5\log_23+2<0\)
\(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)
Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)
Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)
Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)
b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm.
Áp dụng bất đẳng thức Cauchy ta có
\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)
Suy ra
\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
Mặt khác :
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)
Từ đó ta thu được :
\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)
c) Ta chứng minh bài toán tổng quát :
\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1
Thật vậy,
\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\)
suy ra :
\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)
\(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)
Áp dụng bất đẳng thức Cauchy ta có :
\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)
Do đó ta có :
\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1
Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi m : \(m^2-2\left(x^3_0+x_0\right)m+y_0+x^2_0-x_0-2=0\)
\(\Leftrightarrow\Delta'=\left(x^3_0+x_0\right)^2-\left(y_0+x^2_0-x_0-2\right)< 0\)
\(\Leftrightarrow y_0>x^6_0+2x^4_0+x_0+2\)
Xét phương trình : \(2mx^3-x^2+\left(2m+1\right)x-m^2+2=x^6+2x^4+x+2\)
\(\Leftrightarrow m^2-2\left(x^3+x\right)m+\left(x^3+x\right)^2=0\)
\(\Leftrightarrow\left(x^3+x-m\right)^2=0\) (*)
Vì phương trình \(x^3+x-m=0\) luôn có nghiệm nên (*) luôn có nghiệm bội.
Vậy \(\left(C_m\right)\) luôn tiếp xúc với đường cong \(y=x^6+2x^4+x+2\)
Khi đó: có nghiệm kép với mọi m
hay có nghiệm kép với mọi m
Cách 2: Gọi là các điểm mà họ đường thẳng trên không đi qua.
Hay vô nghiệm ẩn m
vô nghiệm ẩn m
Xét đường biên:
Lập phương trình hoành độ giao điểm ta được:
Phương trình này luôn có 1 nghiệm kép nên (dm) luôn tiếp xúc (P)
Vì ta chưa xác định được hình dạng của đường cong cố định nên ta sử dụng phương pháp đường biên của hình lồi
Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi \(\alpha\)
\(2x_0\sin\alpha+2y_0\cos\alpha+4\sin\alpha+1=0\)
\(\Leftrightarrow\left(2x_0+4\right)\sin\alpha+2y_0\cos\alpha+1=0\) (*)
(*) vô nghiệm \(\Leftrightarrow\left(2x_0+4\right)^2+4y^2_0< 1\Leftrightarrow\left(x_0+2\right)^2+y_0^2< \frac{1}{4}\)
Xét đường tròn (C) tâm I(-2;0) và bán kính \(R=\frac{1}{2}\) , ta có :
\(d\left(I,\Delta_{\alpha}\right)=\frac{\left|-4\sin\alpha+2.0\cos\alpha+4\sin\alpha+1\right|}{\sqrt{4\sin^2\alpha+4\cos^2\alpha}}=\frac{1}{2}=R\Rightarrow\Delta_{\alpha}\) luôn tiếp với (C)
Giả sử \(\left(C_m\right)\) luôn tiếp xúc với đường thẳng \(y=ax+b\), khi đó phương trình sau có nghiệm với mọi m :
\(\begin{cases}\frac{\left(3m+1\right)x+m-m^2}{x+m}=ax+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\begin{cases}3m+1-\frac{4m^2}{x+m}=a\left(x+m\right)am+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)
\(\Leftrightarrow\begin{cases}\frac{8m^2}{x+m}=am+3m+1-b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\frac{\left(am+3m+1-b\right)^2}{16m^2}=a\) với mọi m
\(\Leftrightarrow\left(a^2-10a+9\right)m^2+2\left(a+3\right)\left(1-b\right)m+\left(1-b\right)^2=0\) với mọi m
\(\Leftrightarrow\begin{cases}a^2-10a+9=0\\\left(a+3\right)\left(1-b\right)=0\\\left(1-b\right)^2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}a=1;a=9\\b=1\end{cases}\)
Vậy \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng \(y=x+1;y=9x+1\)
Ta có \(y=\left(m+1\right)x+m\left(m+1\right)+\frac{m^3}{x-m}\) suy ra tiệm cận xiên của \(\left(C_m\right)\) là đường thẳng d có phương trình \(y=\left(m+1\right)x+m\left(m+1\right)\)
Giả sử d luôn tiếp xúc với Parabol (P) : \(y=ax^2+bx+c;\left(a\ne0\right)\) khi đó phương trình sau có nghiệm bội với mọi m :
\(ax^2+bx+c=\left(m+1\right)x+m\left(m+1\right)\)
\(\Leftrightarrow ax^2+\left(b-m-1\right)x+c-m^2-m=0\)(*)
\(\Leftrightarrow\Delta=\left(m+1-b\right)^2-4a\left(c-m^2-m\right)=0\)
\(\Leftrightarrow\left(1+4a\right)m^2+2\left[\left(1-b\right)+2a\right]m+\left(1-b\right)^2-4ac=0\) với mọi m
\(\Leftrightarrow\begin{cases}1+4a=0\\\left(1-b\right)+2a=0\\\left(1-b\right)^2-4ac=0\end{cases}\)
\(\Leftrightarrow\begin{cases}a=-\frac{1}{4}\\b=\frac{1}{2}\\c=-\frac{1}{4}\end{cases}\)
\(\Rightarrow\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)
Vậy d luôn tiếp xúc với Parabol (P) \(y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)
Giả sử \(M\left(x_0;y_0\right)\) là điểm mà d không đi qua, khi đó phương trình :
\(y_0=\left(m+1\right)x_0+m^2+m\Leftrightarrow m^2+\left(x_0+1\right)m+x_0-y_0=0\) vô nghiệm với mọi m
\(\Leftrightarrow\Delta=\left(x_0+1\right)^2-4x_0+4y_0< 0\)
\(\Leftrightarrow y_0< -\frac{1}{4}x_0^2+\frac{1}{2}x_0-\frac{1}{4}\)
Ta dễ dàng chứng minh được d luôn tiếp xúc với Parabol
\(\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)
a) Ta có
\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)
Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :
\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)
hay
\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)
b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :
\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)
Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :
\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)
\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)
\(\Rightarrow lgc=\frac{1}{1-lga}\)
Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)
Vì F(x) là nguyên hàm của f(x) trên K nên (F(x))' = f(x). Vì C là hằng số nên (C)’ = 0.
Ta có:
(G(x))' = (F(x) + C)' = (F(x))' + (C)' = f(x) + 0 = f(x)
Vậy G(x) là một nguyên hàm của f(x).