\(\left(P\right):mx+2y+z+2m=0\) và \(\left(Q\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Phương trình hoành độ giao điểm của \(\left(\Delta_m\right)\) và \(\left(C_m\right)\) được viết thành :

    \(\left(x+1\right)\left(x^2-3mx+2m^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-m\right)\left(x-2m\right)=0\)

\(\Rightarrow\) Giao điểm của  \(\left(\Delta_m\right)\) và \(\left(C_m\right)\)  gồm \(A\left(-1;-m-m^2\right);B\left(m;0\right)\) và \(C\left(2m;m^2\right)\), trong số đó, A là điểm duy nhất có hoành độ không đổi (khi m thay đổi)

Đặt \(f_m\left(x\right)=x^3-\left(3m-1\right)x^2+2m\left(m-1\right)x+m^2\)

Các tiếp tuyến của  \(\left(C_m\right)\)  tại B và C lần lượt là các đường thẳng :

\(\left(\Delta_B\right):y=f_m'\left(x_B\right)x+y_b-f_m'\left(x_B\right)x_B\)

\(\left(\Delta_C\right):y=f_m'\left(x_C\right)x+y_C-f_m'\left(x_C\right)x_C\)

Ta cần tìm m để B và C cùng khác A và \(\Delta_B\backslash\backslash\Delta_C\), tức là :

\(\begin{cases}x_B\ne x_A\\x_C\ne x_A\\f'_m\left(x_B\right)=f'_m\left(x_C\right)\\y_B-f'_m\left(x_B\right)x_B\ne y_C-f'_m\left(x_C\right)x_C\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-1\\m\ne-\frac{1}{2}\\-m^2=2m^2+2m\\m^3\ne-4m^3-3m^2\end{cases}\)

                                                        \(\Leftrightarrow m=-\frac{2}{3}\)

 

22 tháng 5 2017

Ta có \(\overrightarrow{n}_{\beta}=\left(1;3k;-1\right);\overrightarrow{n}_{\gamma}=\left(k;-1;1\right)\)

Gọi \(d_k=\beta\cap\gamma\)

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III

18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\) B. \(D\left(0;-6;0\right)\) C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\) D. \(D\left(6;0;0\right)\) 11. Trong không gian với hệ tọa Oxyz, mặt cầu...
Đọc tiếp

18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC

A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

B. \(D\left(0;-6;0\right)\)

C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\)

D. \(D\left(6;0;0\right)\)

11. Trong không gian với hệ tọa Oxyz, mặt cầu \(\left(S\right):\) \(x^2+y^2+z^2-2x+4y-4=0\) cắt mp \(\left(P\right):\) \(x+y-z+4=0\) theo giao tuyến đường tròn \(\left(C\right)\) . Tính diện tích S của đường tròn \(\left(C\right)\)

A. \(S=\frac{2\pi\sqrt{78}}{3}\)

B. \(S=2\pi\sqrt{6}\)

C. \(S=6\pi\)

D. \(S=\frac{26\pi}{3}\)

14. Trong không gian Oxyz, mặt cầu tâm \(I\left(1;2;-1\right)\) cắt mp \(\left(P\right):\) \(x-2y-2z-8=0\) theo một đường tròn có bán kính bằng 4 có pt là

A. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\)

B. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\)

C. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)

15. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(2;-1;3\right)\) , \(B\left(4;0;1\right)\) , \(C\left(-10;5;3\right)\) Vecto nào dưới đây là VTPT của mp \(\left(ABC\right)\)

A. \(\overrightarrow{n_1}\left(1;2;0\right)\)

B. \(\overrightarrow{n_2}\left(1;2;2\right)\)

C. \(\overrightarrow{n_3}\left(1;8;2\right)\)

D. \(\overrightarrow{n_4}\left(1;-2;2\right)\)

D. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\)

2
NV
22 tháng 6 2020

14.

\(d\left(I;\left(P\right)\right)=\frac{\left|1-2.2+2-8\right|}{\sqrt{1^2+\left(-2\right)^2+\left(-2\right)^2}}=3\)

Áp dụng định lý Pitago:

\(R=\sqrt{4^2+d^2\left(I;\left(P\right)\right)}=\sqrt{4^2+3^2}=5\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)

15.

\(\overrightarrow{AB}=\left(2;1;-2\right)\) ; \(\overrightarrow{AC}=\left(-12;6;0\right)\)

\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(12;24;24\right)=12\left(1;2;2\right)\)

\(\Rightarrow\) Mặt phẳng (ABC) nhận \(\left(1;2;2\right)\) là 1 vtpt

NV
22 tháng 6 2020

18.

\(D\in Ox\Rightarrow D\left(a;0;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)

\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)

\(\Leftrightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

11.

Mặt cầu (S) tâm \(I\left(1;-2;0\right)\) bán kính \(R=\sqrt{1^2+\left(-2\right)^2-\left(-4\right)}=3\)

\(d\left(I;\left(P\right)\right)=\frac{\left|1-2-0+4\right|}{\sqrt{1^2+1^2+\left(-1\right)^2}}=\sqrt{3}\)

Gọi bán kính đường tròn (C) là \(r\)

Áp dụng định lý Pitago:

\(r=\sqrt{R^2-d^2\left(I;\left(P\right)\right)}=\sqrt{6}\)

Diện tích đường tròn: \(S=\pi r^2=6\pi\)

NV
19 tháng 3 2019

\(\overrightarrow{n_{\left(P\right)}}=\left(7;3k;m\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(k;-m;1\right)\) ; \(\overrightarrow{n_{\alpha}}=\left(1;1;-2\right)\)

Gọi d là giao tuyến của \(\left(P\right)\)\(\left(Q\right)\Rightarrow\) d có 1 vtcp \(\overrightarrow{u_d}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]\)

\(\Rightarrow\overrightarrow{u_d}=\left(3k+m^2;mk-7;-7m-3k^2\right)\)

\(d\perp\left(\alpha\right)\Rightarrow\) \(\overrightarrow{u_d}\) tương ứng tỉ lệ với \(\overrightarrow{n_{\alpha}}\)

\(\Rightarrow\frac{3k+m^2}{1}=\frac{mk-7}{1}=\frac{7m+3k^2}{2}=\frac{3k^2+m^2k}{k}=\frac{m^2k-7m}{k-2}=\frac{m\left(mk-7\right)}{k-2}\)

\(\Rightarrow\frac{mk-7}{1}=\frac{m\left(mk-7\right)}{k-2}\Rightarrow m=k-2\) (do nếu \(mk-7=0\) thì 3 thành phần của vecto \(\overrightarrow{u_d}\) đều bằng 0, vô nghĩa)

\(\Rightarrow3k+\left(k-2\right)^2=k\left(k-2\right)-7\) \(\Rightarrow\left\{{}\begin{matrix}k=-11\\m=-13\end{matrix}\right.\)

Đáp án có vấn đề thì phải, thay vào được \(\overrightarrow{u_d}=\left(136;136;-272\right)\) (đúng)

NV
19 tháng 3 2019

Bạn nói mới để ý mình xác định nhầm dấu \(\overrightarrow{n_{\alpha}}=\left(1;-1;-2\right)\) mới đúng

27 tháng 4 2017

a) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

3(12 + 4t) +5(9 + 3t) - (1 + t) = 0

⇔ 26t + 78 = 0 ⇔ t = -3.

Tức là d ∩ (α) = M(0 ; 0 ; -2).

Trong trường hợp này d cắt (α) tại điểm M.

b) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

(1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0

⇔ 0.t + t = 9, phương trình vô nghiệm.

Chứng tỏ d và (α) không cắt nhau., ta có d // (α).

c) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

(1 + 1) + (1+ 2t) + (2 - 3t) - 4 = 0

⇔ 0t + 0 = 0,phương trình này có vô số nghiệm, chứng tỏ d ⊂ (α) .


3 tháng 4 2017

Mặt cầu (S) có tâm I(3, -2, 1) và bán kính R = 10.

Khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (α) là:

d(I, α) = ∣∣ ∣∣2.3−2.(−2)−1+9√22+(−2)2+(−1)2∣∣ ∣∣=183=6|2.3−2.(−2)−1+922+(−2)2+(−1)2|=183=6

Vì d(I, α) < R ⇒⇒ Mặt phẳng (α) cắt mặt cầu (S) theo đường tròn (C) có phương trình (C):

{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100

Tâm K của đường tròn (C) là hình chiếu vuông góc của tâm I của mặt cầu trên mặt phẳng (α).

Mặt phẳng (α) có vectơ pháp tuyến →nn→ = (2, -2. -1).

Đường thẳng d qua I và vuông góc với (α) nhận →nn→ = (2, -2, -1) làm vectơ chỉ phương và có phương trình d :

⎧⎪⎨⎪⎩x=3+2ty=−2−2tz=1−t{x=3+2ty=−2−2tz=1−t

Thay t = -2 vào phương trình của d, ta được toạ độ tâm K của đường tròn (C).

⎧⎪⎨⎪⎩x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3{x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3

⇒⇒ K(-1, 2, 3)

Ta có: IK2 = (-1 - 3)2 + (2 + 2)2 + (3 - 1)2 = 36.

Bán kính r của đường tròn (C) là:

r2 = R2 - IK2 = 102 - 36 = 64 ⇒⇒ r= 8



9 tháng 4 2017

Giải

Mặt cầu (S) có tâm I(3, -2, 1) và bán kính R = 10.

Khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (α) là:

d(I, α) = ∣∣ ∣∣2.3−2.(−2)−1+9√22+(−2)2+(−1)2∣∣ ∣∣=183=6|2.3−2.(−2)−1+922+(−2)2+(−1)2|=183=6

Vì d(I, α) < R ⇒⇒ Mặt phẳng (α) cắt mặt cầu (S) theo đường tròn (C) có phương trình (C):

{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100{2x−2y−z+9=0(x−3)2+(y+2)2+(z−1)2=100

Tâm K của đường tròn (C) là hình chiếu vuông góc của tâm I của mặt cầu trên mặt phẳng (α).

Mặt phẳng (α) có vectơ pháp tuyến →nn→ = (2, -2. -1).

Đường thẳng d qua I và vuông góc với (α) nhận →nn→ = (2, -2, -1) làm vectơ chỉ phương và có phương trình d :

⎧⎪⎨⎪⎩x=3+2ty=−2−2tz=1−t{x=3+2ty=−2−2tz=1−t

Thay t = -2 vào phương trình của d, ta được toạ độ tâm K của đường tròn (C).

⎧⎪⎨⎪⎩x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3{x=3+2.(−2)=−1y=−2−2.(−2)=2z=1−2.(−2)=3

⇒⇒ K(-1, 2, 3)

Ta có: IK2 = (-1 - 3)2 + (2 + 2)2 + (3 - 1)2 = 36.

Bán kính r của đường tròn (C) là:

r2 = R2 - IK2 = 102 - 36 = 64 ⇒⇒ r= 8


NV
4 tháng 4 2019

Ta có \(A\left(4;0;-4\right)\)\(B\left(1;-1;0\right)\) thuộc d

Gọi phương trình (P): \(ax+by+cz+4d=0\)

Do (P) chứa d \(\Rightarrow\left\{{}\begin{matrix}4a-4c+4d=0\\a-b+4d=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c-d\\b=a+4d=c+3d\end{matrix}\right.\)

Phương trình (P) viết lại:

\(\left(c-d\right)x+\left(c+3d\right)y+cz+4d=0\)

Do (P) tiếp xúc (S):

\(d\left(I;\left(P\right)\right)=R\Leftrightarrow\frac{\left|3\left(c-d\right)-3\left(c+3d\right)+c+4d\right|}{\sqrt{\left(c-d\right)^2+\left(c+3d\right)^2+c^2}}=3\)

\(\Leftrightarrow\left|c-8d\right|=3\sqrt{3c^2+4cd+10d^2}\)

\(\Leftrightarrow26c^2+52cd+26d^2=0\) \(\Rightarrow c=-d\)

Giao của (P) và trục Oz (\(x=0;y=0\)):

\(cz+4d=0\Rightarrow z=-\frac{4d}{c}=4\Rightarrow\left(0;0;4\right)\)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán