Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}\)
\(\Leftrightarrow\hept{\begin{cases}ab=9\\a^2=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\\frac{81}{b^2}=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\27=b^3\end{cases}}\)
\(\Leftrightarrow a=b=3\)
Đề sửa lại là: Chứng minh \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) nhé.
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}=\frac{a+b+c}{2.\left(a+b+c\right)}.\)
Xét 2 trường hợp:
TH1: \(a+b+c=0\) thì \(\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\), không phụ thuộc vào các giá trị \(a;b;c\) (1)
TH2: \(a+b+c\ne0\) thì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)
Có: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\), không phụ thuộc vào các giá trị \(a;b;c\) (2)
Từ (1) và (2) => \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) không phụ thuộc vào các giá trị của \(a;b;c.\)
Chúc bạn học tốt!
a)Gọi N là trung điểm của BI => INM=45 độ
Ta có NM//IC ( vì NM là đường trung bình của tam giác BIC)
=> BIC=135 độ
=>180-1/2(góc ABC+ACB)=135 độ
=> góc B+ góc C=90 độ
=> BAC=90 độ)
b) Kẻ IK vuông góc với BC
Do I là giao của 2 đường phân giác
=>IH=IK
Tam giác AEB vuông tại A => góc AEB+EBA=90 độ
Tam giác IMB vuông tại I => góc IMB+MBI=90 độ
Mà góc EBA= góc MBI ( do BI là phân giác của góc ABC)
=> góc AEB= góc IMB => góc EIH= góc MIK
Xét tam giác EHI và tam giác MIK có
góc EIH= góc MIK
IH=IK
góc EHI= góc MKI
=> tam giác EIH= tam giác MIK ( g-c-g)
=>EI=IM
Mà IM=1/2BI =>EI=1/2BI =>EI=1/3EB
Tam giác AEB có IH//AB( vì cùng vuông góc với AC)
=> IH/AB=EI/EB ( hệ quả định lí Ta-lét)
=>IH/AB=1/3
=>BA=3IH
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
a/b=c/d=a+c/b+d
=>a/b=a+c/b+d (đpcm)
Hì, mik cx đag k bt lm 1 bài gần giống như thế này, nếu mak mik lm đc bài của mik. Thì mik sẽ giải bài cho bn. Đc k
Do x < y
=> \(\frac{a}{m}< \frac{b}{m}\)
=> \(\frac{a}{m}+\frac{a}{m}< \frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
=> \(\frac{2a}{m}< \frac{a+b}{m}< \frac{2b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{m}:2< \frac{b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
=> x < z < y
Hình bạn tự vẽ nha!
Vì góc E = góc O nên tam giác AEO là tam giác cân.
\(\Rightarrow\widehat{A}=180^0-50^0-50^0\\ \Rightarrow\widehat{A}=80^0\)
Lại có AM là phân giác góc ngoài tại đỉnh A.
\(\Rightarrow\widehat{AMO}=\frac{180^0-80^0}{2}=50^0\left(=\widehat{E}\right)\)
Mà hai góc này nằm ở vị trí đồng vị nên EO // AM.
a, Vì b,d > 0 -> ad/bd < cb/bd -> ad<bc
b, ad<bc -> ad/bd < bc/bd ( vì b,d > 0 => bd>0) => a/b < c/d
a) \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
b) \(ad< bc\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
\(ad< bc\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)