Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
= \(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
=> \(\frac{bz-cy}{a}=0\)nên bz - cy = 0 => bz = cy.Hay b/y = c/z [1]
=> \(\frac{cx-az}{b}=0\)nên cx - az = 0 => cx = az . Hay c/z = a/x [2]
Từ 1 và 2 => \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Chúc bạn học tốt!
Bạn tham khảo tại đây nhé:
Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)
\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)
Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)
b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)
\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)
Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)
c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)
\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)
Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)
\(A=7+7^2+7^3+........+7^{2016}\)
\(A=7\left(1+7+7^2+7^3+........+7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\)
\(A=7\left[\left(1+7+7^2+7^3\right)+........+\left(7^{2012}+7^{2013}+7^{2014}+7^{2015}\right)\right]\)
\(A=7\left[\left(1+7+7^2+7^3\right)+........+7^{2012}\left(1+7+7^2+7^3\right)\right]\)
\(A=7\left[400+........+7^{2012}.400\right]\)
\(A=7.400\left(1+7^4+7^8+7^{12}+......+7^{2012}\right)⋮400\)
Vì \(20^2=400\) nên \(A⋮20^2\left(dpcm\right)\)
Có: \(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}\)
\(\Leftrightarrow\hept{\begin{cases}ab=9\\a^2=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\\frac{81}{b^2}=3b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{9}{b}\\27=b^3\end{cases}}\)
\(\Leftrightarrow a=b=3\)