Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
Đặt √x = t, x ≥ 0 => t ≥ 0.
Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)
Nếu t = 0, t = 1, f(t) = 1 >0
Với 0 < t <1, f(t) = t8 + (t2 - t5)+1 - t
t8 > 0, 1 - t > 0, t2 - t5 = t3(1 – t) > 0. Suy ra f(t) > 0.
Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0
Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0.
a) {a}, {b}, Ø, A.
b) {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, Ø, B.
Ghi chú: Tập hợp Ø là tập hợp con của tập hợp bất kì. Mỗi một tập hợp là tập hợp con của chính nó.
Ta có: (x - y)2 ≥ 0 <=> x2 + y2 – 2xy ≥ 0
<=> x2 + y2 – xy ≥ xy
Do x ≥ 0, y ≥ 0 => x + y ≥ 0,
Ta có (x + y)(x2 + y2 – xy) ≥ (x + y)xy <=> x3 + y3 ≥ x2y + xy2
a) VT = [sinacosb + cosasinb][sinacosb - cosasina]
= (sinacosb)2 – (cosasinb)2 = sin2 a(1 – sin2 b) – (1 – sin2 a)sin2 b
= sin2a – sin2b = cos2b( 1– cos2a) – cos2 a(1 – cos2 b) = cos2b – cos2a
b) VT = (cosacosb - sinasinb)(cosacosb + sinasinb)
= (cosacosb)2 – (sinasinb)2
= cos2 a(1 – sin2 b) – (1 – cos2 a)sin2 b = cos2 a – sin2 b
= cos2 b(1 – sin2 a) – (1 – cos2 b)sin2 a = cos2 b – sin2 a
1.
VT = sin x sin (pi/3 - x)sin (pi/3 + x)
= [(cos 2x - cos 2pi/3)sin x] / 2
= [(1 - 2sin ^ x + 1/2)sin x] / 2
= [(3 - 4sin^2 x)sin x] / 4
= [(3 sin x - 4 sin^3 x)] / 4
= (sin 3x) / 4 = VP.
2.
Hình như có hai cách:
C1.
VT = sin (a + b)sin (a - b)
= (cos 2 b - cos 2a) / 2
= [(2cos^2 b - 1) - 2cos ^2 a + 1)] / 2
= cos^2 b - cos^2 a = VP
C2.
VP = cos^2 b - cos^2 a
= (1 + cos 2b) / 2 - (1 + cos 2a)/2
= (cos 2b - cos 2a) / 2
= sin(a + b)sin(a - b) = VT
a) Phương trình đường thẳng (d) qua A(4; 3) và B(2;- 1) có dạng tổng quát là y = ax + b, trong đó a, b là các hằng số cần xác định.
Vì A(4; 3) ∈ d nên ta có phương trình của (d), do đó ta có: 3 = a.4 + b.
Tương tự B(2;- 1) ∈ d nên ta có: - 1 = a.2 + b
Từ đó ta tìm được phương trình đường thẳng AB là: y = 2x - 5.
Phương trình đường thẳng AB là: y = 2x - 5.
b) Đáp số: y = - 1.
Ta có : |5x - 4| ≥ 6
(=)\(\begin{cases}\text{5x - 4 ≥ 6}\\\text{5x - 4 ≥-6}\end{cases}\) => Ta lấy 5x -4 ≥ -6
(=) 5x ≥ -2
(=) x ≥ \(\frac{-2}{5}\)
Tết tới tấn tài – Xuân sang đắc lộc – Gia đình hạnh phúc – Vạn sự cát tường.
THANK YOU VERY MUCH
HAPPY NEW YEAR