Chng minh các đng th
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2016

a) VT = [sinacosb + cosasinb][sinacosb - cosasina]

         = (sinacosb)2 – (cosasinb)2 = sin2 a(1 – sin2 b) – (1 – sin2 a)sin2 b

         = sin2a – sin2b = cos2b( 1– cos2a) – cos2 a(1 – cos2 b) =  cos2b – cos2a

 

b) VT = (cosacosb - sinasinb)(cosacosb + sinasinb)

       = (cosacosb)2 – (sinasinb)2           

       = cos2 a(1 – sin2 b) – (1 – cos2 a)sin2 b = cos2 a – sin2 b

      = cos2 b(1 – sin2 a) – (1 – cos2 b)sin2 a = cos2 b – sin2 a

17 tháng 2 2016

1. 
VT = sin x sin (pi/3 - x)sin (pi/3 + x) 
= [(cos 2x - cos 2pi/3)sin x] / 2 
= [(1 - 2sin ^ x + 1/2)sin x] / 2 
= [(3 - 4sin^2 x)sin x] / 4 
= [(3 sin x - 4 sin^3 x)] / 4 
= (sin 3x) / 4 = VP. 
2. 
Hình như có hai cách: 
C1. 
VT = sin (a + b)sin (a - b) 
= (cos 2 b - cos 2a) / 2 
= [(2cos^2 b - 1) - 2cos ^2 a + 1)] / 2 
= cos^2 b - cos^2 a = VP 
C2. 
VP = cos^2 b - cos^2 a 
= (1 + cos 2b) / 2 - (1 + cos 2a)/2 
= (cos 2b - cos 2a) / 2 
= sin(a + b)sin(a - b) = VT 

9 tháng 8 2019

1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)

=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)

2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)

\(=-cos\left(\pi-A\right)=cosA\)

9 tháng 8 2019

4) bạn ơi +2 vào vế phải mới đúng nhé

2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)

\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)

=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)

\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)

= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3

= sin2A + sin2B + sin2C

NV
17 tháng 6 2020

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

NV
17 tháng 6 2020

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

9 tháng 10 2018

. mình ghi nhầm lớp 10, này là toán lớp 9 nha mb

10 tháng 10 2022

a: \(=1+sin2a+1-sin2a=2\)

b: Sửa đề: \(B=sin^6a+cos^6a+3sin^2acos^2a\)

\(=\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a\cdot\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)

=1

NV
2 tháng 6 2020

\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)

NV
15 tháng 2 2019

Áp dụng công thức biến tích thành tổng:

\(cos\left(a+b\right).cos\left(a-b\right)=\dfrac{1}{2}\left(cos2a+cos2b\right)\)

\(=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)=\dfrac{1}{2}\left(2cos^2a-2sin^2b\right)\)

\(=cos^2a-sin^2b\)

\(cos\left(\dfrac{\pi}{4}+a\right).cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos\dfrac{\pi}{2}+cos2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos2a+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos^2a-sin^2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos^2a\)

NV
10 tháng 3 2019

Giả sử các biểu thức đều xác định:

a/ \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)

\(=sin^2x.\frac{sinx}{cosx}+sinx.cosx+cos^2x.\frac{cosx}{sinx}+sinx.cosx\)

\(=sinx\left(\frac{sin^2x}{cosx}+cosx\right)+cosx\left(\frac{cos^2x}{sinx}+sinx\right)\)

\(=sinx\left(\frac{sin^2x+cos^2x}{cosx}\right)+cosx\left(\frac{cos^2x+sin^2x}{sinx}\right)=\frac{sinx}{cosx}+\frac{cosx}{sinx}=tanx+cotx\)

b/

\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+tan^2x=1+tan^2x+tan^2x=1+2tan^2x\)

c/ \(\frac{cosx}{1+sinx}+tanx=\frac{cosx\left(1-sinx\right)}{1-sin^2x}+\frac{sinx.cosx}{cos^2x}=\frac{cosx-cosx.sinx}{cos^2x}+\frac{sinx.cosx}{cos^2x}\)

\(=\frac{cosx}{cos^2x}=\frac{1}{cosx}\)

d/ \(\frac{sinx}{1+cosx}+\frac{1+cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}+\frac{sinx\left(1+cosx\right)}{sin^2x}\)

\(=\frac{sinx-sinx.cosx}{1-cos^2x}+\frac{sinx+sinx.cosx}{sin^2x}=\frac{sinx-sinx.cosx}{sin^2x}+\frac{sinx+sinx.cosx}{sin^2x}\)

\(=\frac{2sinx}{sin^2x}=\frac{2}{sinx}\)

B=1-sin2a+cos2a

\(=\sin^2a+\cos^2a-\sin^2a+\cos^2a=2\cos^2a\)

C= 1-sina.cosa.tana

\(=1-\sin a.\cos a.\frac{\sin a}{\cos a}=1-\sin^2a=\cos^2a\)

biết có vậy thôi à