K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

NV
15 tháng 5 2020

Để tam thức đổi dấu 2 lần

\(\Leftrightarrow x^2-\left(m+2\right)x+8m+1=0\) có 2 nghiệm pb

\(\Leftrightarrow\Delta=\left(m+2\right)^2-4\left(8m+1\right)>0\)

\(\Leftrightarrow m^2-28m>0\Rightarrow\left[{}\begin{matrix}m>28\\m< 0\end{matrix}\right.\)

15 tháng 5 2020

Đổi dấu 2 lần nghĩa là sao ạ? :(

NV
1 tháng 5 2020

Do \(a=-1< 0\) nên để điều kiện bài toán thỏa mãn thì:

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-2m+1>0\\x_1\le0< 1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-f\left(0\right)\le0\\-f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m\le0\\0\le0\end{matrix}\right.\)

\(\Rightarrow m\ge\frac{1}{2}\)

14 tháng 12 2022

cô ơi rk đề cho f(x)>0 mà khi thay (0;1) lai thành f(x)<= vậy ạ

 

8 tháng 1 2017

1. Ta có \(1+x^2\ge2x\), \(1+y^2\ge2y\), \(1+z^2\ge2z\)

Suy ra \(P=\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Chọn D. \(P\le\frac{1}{2}\)

9 tháng 1 2017

2. a) Áp dụng BĐT Bunhiacopxki, ta có

\(\left(\frac{1}{x}+\frac{4}{y}\right)\left(x+y\right)\ge\left[\left(\sqrt{\frac{1}{x}.x}\right)^2+\left(\sqrt{\frac{4}{y}.y}\right)^2\right]=\left(1^2+2^2\right)\)

\(\Rightarrow\frac{1}{x}+\frac{4}{y}\ge1\)

Đẳng thức xảy ra khi \(\left\{\begin{matrix}\frac{1}{x^2}=\frac{4}{y^2}\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x=\frac{10}{3}\\y=\frac{5}{3}\end{matrix}\right.\)

31 tháng 10 2021

Chọn C

NV
18 tháng 10 2020

\(\Leftrightarrow x^3-6x^2+11x-m=0\) (1) có 3 nghiệm pb \(x=\left\{a;b;c\right\}\)

Theo định lý Viet:

\(\left\{{}\begin{matrix}a+b+c=6\\ab+bc+ca=11\\abc=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2b+b=6\\b\left(a+c\right)+ac=11\\abc=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\2b^2+ac=11\\m=abc\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\ac=11-2b^2=3\\m=b.ac=2.3=6\end{matrix}\right.\)

Vậy \(m=6\)